1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Câu 9 trang 126 SGK Hình học 11 Nâng cao

Câu 9 trang 126 SGK Hình học 11 Nâng cao

Giải Bài Tập Hình Học 11 Nâng Cao - Câu 9 Trang 126

Câu 9 trang 126 SGK Hình học 11 Nâng cao là một bài tập quan trọng trong chương trình học Hình học không gian. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, đường thẳng và mặt phẳng để giải quyết các vấn đề thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.

Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.

Đề bài

Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.

a. Với giá trị nào của m thì AB’C’ là tam giác vuông ?

b. Khi tam giác AB’C’ vuông tại B’, kẻ AH ⊥ BC. Chứng minh rằng B’C’H là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (AB’C’).

Lời giải chi tiết

Câu 9 trang 126 SGK Hình học 11 Nâng cao 1

\(\Delta ABC\) vuông tại A nên theo pitago:

\(A{C^2} = B{C^2} - A{B^2}\) \( = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\)

Tam giác ABB’ vuông tại B nên theo pitago:

\(AB{'^2} = A{B^2} + BB{'^2}\) \( = {a^2} + {a^2} = 2{a^2}\)

Tam giác ACC’ vuông tại C nên theo pitago:

\(AC{'^2} = A{C^2} + CC{'^2} = 3{a^2} + {m^2}\)

Trong (BCC’B’), kẻ \(B'M \bot CC'\) thì \(B'M = 2a,MC' = m - a\)

Tam giác B’MC’ vuông tại M nên theo pitago:

\(B'C{'^2} = B'{M^2} + MC{'^2}\) \( = {\left( {2a} \right)^2} + {\left( {m - a} \right)^2} = 4{a^2} + {\left( {m - a} \right)^2}\)

a. Ta có:

+) Tam giác AB’C’ vuông ở A khi và chỉ khi:

\(\begin{array}{l}AB{'^2} + AC{'^2} = B'C{'^2}\\ \Leftrightarrow 2{a^2} + 3{a^2} + {m^2} = 4{a^2} + {\left( {m - a} \right)^2}\\ \Leftrightarrow 5{a^2} + {m^2} = 4{a^2} + {m^2} - 2ma + {a^2}\\ \Leftrightarrow 2ma = 0\\ \Leftrightarrow m = 0\end{array}\)

Vậy tam giác AB’C’ vuông ở A khi và chỉ khi m = 0

+) Tam giác AB’C’ vuông ở C’ khi và chỉ khi :

\(\begin{array}{l}AC{'^2} + B'C{'^2} = AB{'^2}\\ \Leftrightarrow 3{a^2} + {m^2} + 4{a^2} + {\left( {m - a} \right)^2} = 2{a^2}\\ \Leftrightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} = 0\end{array}\)

Điều này không xảy ra vì:

\(\left\{ \begin{array}{l}5{a^2} > 0\\{m^2} \ge 0\\{\left( {m - a} \right)^2} \ge 0\end{array} \right.\)\( \Rightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} > 0,\forall m\)

Tam giác AB’C’ vuông ở B’ khi và chỉ khi :

\(\begin{array}{l}AB{'^2} + B'C{'^2} = AC{'^2}\\ \Leftrightarrow 2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2}\\ \Leftrightarrow 6{a^2} + {m^2} - 2ma + {a^2} - 3{a^2} - {m^2} = 0\\ \Leftrightarrow 4{a^2} - 2ma = 0\\ \Leftrightarrow 2ma = 4{a^2}\\ \Leftrightarrow m = 2a\end{array}\)

Vậy tam giác AB’C’ vuông ở B’ khi và chỉ khi m = 2a

b. Giả sử tam giác AB’C’ vuông ở B’, tức là m = 2a

Tam giác ABC vuông tại A có đường cao AH nên:

\(BH.BC = A{B^2}\)\( \Leftrightarrow BH = \frac{{A{B^2}}}{{BC}} = \frac{{{a^2}}}{{2a}} = \frac{a}{2}\)

\( \Rightarrow HC = BC - BH\) \( = 2a - \frac{a}{2} = \frac{{3a}}{2}\)

Tam giác B’BH vuông tại B nên:

\(B'{H^2} = B'{B^2} + B{H^2}\) \( = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\)

Tam giác C’CH vuông tại C nên:

\(C'{H^2} = C'{C^2} + C{H^2}\) \( = {\left( {2a} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{25{a^2}}}{4}\)

\(B'C{'^2} = 4{a^2} + {\left( {2a - a} \right)^2} = 5{a^2}\)

\( \Rightarrow B'{H^2} + B'C{'^2}\) \( = \frac{{5{a^2}}}{4} + 5{a^2} = \frac{{25{a^2}}}{4} = C'{H^2}\)

\( \Rightarrow \Delta B'C'H\) vuông tại B’.

*) Tính góc giữa mp(ABC) và mp(AB’C’) khi m = 2a.

Gọi I là giao điểm của B’C’ và BC.

Do BB’ // CC’ , BB’ = a, CC’ = 2a nên BB' là đường trung bình của tam giác ICC'

Do đó BC = BI, B’C’ = B’I.

Xét phép chiếu lên mp(ABC). Ta có tam giác AIC là hình chiếu của tam giác AIC’. Gọi φ là góc giữa mp(ABC) và mp(AB’C’) thì \({S_{AIC}} = {S_{AIC'}}\cos \varphi \)

Ta có: \({S_{AIC}} = 2{S_{ABC}} \)\( = 2.\frac{1}{2}AB.AC = 2.\frac{1}{2}.a.a\sqrt 3 = {a^2}\sqrt 3 \)

Mặt khác : \({S_{AIC'}} = {1 \over 2}IC'.AB' \)\(= {1 \over 2}.2a\sqrt 5 .a\sqrt 2 = {a^2}\sqrt {10} \)

Từ đó : \(\cos \varphi = {{{a^2}\sqrt 3 } \over {{a^2}\sqrt {10} }} = {{\sqrt {30} } \over {10}}\)

Vậy góc giữa mp(ABC) và mp(AB’C’) là φ được tính bởi \(\cos \varphi = {{\sqrt {30} } \over {10}},0^\circ < \varphi < 90^\circ \)

.

Giải Chi Tiết Câu 9 Trang 126 SGK Hình Học 11 Nâng Cao

Câu 9 trang 126 SGK Hình học 11 Nâng cao thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, các phép toán vectơ, điều kiện đồng phẳng của ba vectơ, và phương trình mặt phẳng.

Đề Bài Câu 9 Trang 126 SGK Hình Học 11 Nâng Cao

(Đề bài cụ thể của câu 9 sẽ được chèn vào đây. Ví dụ: Cho bốn điểm A, B, C, D không đồng phẳng. Chứng minh rằng bốn điểm đó tạo thành một tứ diện.)

Lời Giải Chi Tiết

Để chứng minh bốn điểm A, B, C, D tạo thành một tứ diện, ta cần chứng minh rằng bốn điểm này không đồng phẳng. Điều này có nghĩa là ba vectơ AB, AC, và AD không đồng phẳng.

Để chứng minh ba vectơ không đồng phẳng, ta có thể tính tích hỗn hợp của chúng. Nếu tích hỗn hợp khác 0, thì ba vectơ đó không đồng phẳng.

Tích hỗn hợp của ba vectơ AB, AC, và AD được tính như sau:

[AB, AC, AD] = (AB x AC) . AD

Trong đó:

  • AB x AC là tích vector của ABAC.
  • (AB x AC) . AD là tích vô hướng của tích vector (AB x AC) và AD.

Nếu kết quả tính toán tích hỗn hợp khác 0, thì bốn điểm A, B, C, D không đồng phẳng và do đó tạo thành một tứ diện.

Ví Dụ Minh Họa

Giả sử A(1; 2; 3), B(2; 3; 4), C(3; 4; 5), D(4; 5; 6). Ta tính:

AB = (1; 1; 1)

AC = (2; 2; 2)

AD = (3; 3; 3)

Ta thấy AC = 2ABAD = 3AB. Điều này có nghĩa là ba vectơ AB, AC, và AD cùng phương, do đó chúng đồng phẳng. Vậy bốn điểm A, B, C, D đồng phẳng và không tạo thành một tứ diện.

Lưu Ý Quan Trọng

Khi giải các bài toán liên quan đến đường thẳng và mặt phẳng, học sinh cần chú ý:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ (cộng, trừ, nhân với một số, tích vô hướng, tích vector).
  • Hiểu rõ điều kiện đồng phẳng của ba vectơ.
  • Biết cách viết phương trình mặt phẳng.

Tusach.vn - Nguồn Tài Liệu Học Tập Uy Tín

Tusach.vn là website cung cấp tài liệu học tập trực tuyến uy tín, với đội ngũ giáo viên giàu kinh nghiệm. Chúng tôi luôn cập nhật lời giải chi tiết, chính xác và dễ hiểu cho các bài tập trong SGK Hình học 11 Nâng cao. Hãy truy cập tusach.vn để học tập hiệu quả và đạt kết quả cao trong môn Hình học!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN