Bài tập Câu 15 trang 28 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.
a. Vẽ đồ thị của hàm số y = sinx rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng (-π ; 4π) là nghiệm của mỗi phương trình sau :
Vẽ đồ thị của hàm số \(y = \sin x\) rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng \((-π ; 4π)\) là nghiệm của mỗi phương trình sau :
1. \(\sin x = - {{\sqrt 3 } \over 2}\)
2. \(\sin x = 1\)
Lời giải chi tiết:

\(1/\,\sin x = - {{\sqrt 3 } \over 2} \)
Vẽ đường thẳng (d): \(y = - {{\sqrt 3 } \over 2}\).
Ta thấy trong khoảng \((-π ; 4π)\) thì (d) cắt đồ thị hàm số \(y=\sin x\) tại các điểm có hoành độ:
\({x_1} = - {\pi \over 3};{x_2} = {{5\pi } \over 3};{x_3} = {{11\pi } \over 3}\); \({x_4} = - {{2\pi } \over 3};{x_5} = {{4\pi } \over 3};{x_6} = {{10\pi } \over 3}\).
Kiểm tra bằng cách đại số:
\(\begin{array}{l}\sin x = - \frac{{\sqrt 3 }}{2} = \sin \left( { - \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{{4\pi }}{3} + k2\pi \end{array} \right.\end{array}\)
*Với \(x = - {\pi \over 3} + k2\pi \,\text{ và }\,x \in \left( { - \pi ;4\pi } \right)\) ta có nghiệm :
\({x_1} = - {\pi \over 3};{x_2} = {{5\pi } \over 3};{x_3} = {{11\pi } \over 3}\)
* Với \(x = {{4\pi } \over 3} + k2\pi \,\text{ và }\,x \in \left( { - \pi ;4\pi } \right)\) ta có nghiệm :
\({x_4} = - {{2\pi } \over 3};{x_5} = {{4\pi } \over 3};{x_6} = {{10\pi } \over 3}\)
2/ \(\sin x = 1 \Leftrightarrow x = {\pi \over 2} + k2\pi \)
Vẽ đường thẳng \(d_2:y=1\).
Trong khoảng \((-\pi;4\pi)\) thì \(d_2\) cắt đồ thị hàm số \(y=\sin x\) tại hai điểm phân biệt có hoành độ là:
\({x_1} = {\pi \over 2};{x_2} = {{5\pi } \over 2}.\)
Kiểm tra lại bằng cách đại số:
* Với \(x = {\pi \over 2} + k2\pi \,\text{và}\,x \in \left( { - \pi ;4\pi } \right)\) ta có nghiệm :
\({x_1} = {\pi \over 2};{x_2} = {{5\pi } \over 2}.\)
Cũng câu hỏi tương tự cho hàm số \(y = \cos x\) đối với mỗi phương trình sau
1. \(\cos x = {1 \over 2}\)
2. \(\cos x = -1\).
Lời giải chi tiết:
Tương tự câu a) ta có hình vẽ sau :

1. Nghiệm của phương trình \(\cos x = {1 \over 2}\) thuộc khoảng \((-π;4π)\) là :
\({x_1} = - {\pi \over 3};{x_2} = {\pi \over 3};{x_3} = {{5\pi } \over 3};\)
\({x_4} = {{7\pi } \over 3};{x_5} = {{11\pi } \over 3}\)
2. Nghiệm của phương trình \(\cos x = -1\) thuộc khoảng \((-π ; 4π)\) là :
\(x_1= -π\), \(x_2 = π\), \(x_3= 3π\)
Câu 15 trang 28 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đạo hàm, và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Sau đó, lập kế hoạch giải cụ thể, bao gồm các bước thực hiện và các kiến thức cần sử dụng.
Giả sử đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Khi giải các bài tập về hàm số và đạo hàm, cần chú ý các điểm sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Tusach.vn là một website cung cấp tài liệu học tập trực tuyến uy tín, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật thường xuyên. Chúng tôi hy vọng rằng, với lời giải chi tiết và những hướng dẫn hữu ích, bạn sẽ học tập tốt hơn môn Đại số và Giải tích 11 Nâng cao.
| Chủ đề | Nội dung |
|---|---|
| Hàm số | Định nghĩa, tập xác định, tập giá trị |
| Đạo hàm | Quy tắc tính đạo hàm, ứng dụng của đạo hàm |
| Khảo sát hàm số | Tìm cực trị, khoảng đơn điệu, vẽ đồ thị |
| Nguồn: Tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập