Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm đạo hàm của các hàm số sau :
\(y = \tan {{x + 1} \over 2}\)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = \left( {\dfrac{{x + 1}}{2}} \right)'.\dfrac{1}{{{{\cos }^2}\dfrac{{x + 1}}{2}}}\) \(\displaystyle = {1 \over {2{{\cos }^2}{{x + 1} \over 2}}}\)
\(y = \cot \sqrt {{x^2} + 1} \)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = \left( {\sqrt {{x^2} + 1} } \right)'.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\)\( = \left( {{x^2} + 1} \right)'.\dfrac{1}{{2\sqrt {{x^2} + 1} }}.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\) \( = \dfrac{{ - 2x}}{{2\sqrt {{x^2} + 1} }}.\dfrac{1}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\)
\(\displaystyle = {{ - x} \over {\sqrt {{x^2} + 1} }}.{1 \over {{{\sin }^2}\sqrt {{x^2} + 1} }}\)
\(y = {\tan ^3}x + \cot 2x\)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = 3{\tan ^2}x\left( {\tan x} \right)' + \left( {2x} \right)'.\dfrac{{ - 1}}{{{{\sin }^2}2x}}\) \( = 3{\tan ^2}x.\dfrac{1}{{{{\cos }^2}x}} - \dfrac{2}{{{{\sin }^2}2x}}\) \(\displaystyle = {{3{{\tan }^2}x} \over {{{\cos }^2}x}} - {2 \over {{{\sin }^2}2x}}\)
\(y = \tan 3x - \cot 3x\)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = \left( {3x} \right)'.\dfrac{1}{{{{\cos }^2}3x}} - \left( {3x} \right)'.\dfrac{{ - 1}}{{{{\sin }^2}3x}}\) \(\displaystyle = {3 \over {{{\cos }^2}3x}} + {3 \over {{{\sin }^2}3x}} = {{12} \over {{{\sin }^2}6x}}\)
\(y = \sqrt {1 + 2\tan x} \)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = \left( {1 + 2\tan x} \right)'.\dfrac{1}{{2\sqrt {1 + 2\tan x} }}\) \( = 2\left( {\tan x} \right)'.\dfrac{1}{{2\sqrt {1 + 2\tan x} }}\) \( = \dfrac{1}{{{{\cos }^2}x}}.\dfrac{1}{{\sqrt {1 + 2\tan x} }}\) \(\displaystyle = {1 \over {{\sqrt {1 + 2\tan x}.{\cos }^2}x }}\)
\(y = x\cot x\)
Phương pháp giải:
Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.
Lời giải chi tiết:
\(y' = x'\cot x + x.\left( {\cot x} \right)'\) \( = \cot x + x.\dfrac{{ - 1}}{{{{\sin }^2}x}}\) \(\displaystyle = \cot x - {x \over {{{\sin }^2}x}}\)
Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao thường liên quan đến việc xét tính đơn điệu của hàm số. Để giải quyết bài toán này, chúng ta cần nắm vững các kiến thức sau:
Giả sử câu 31 yêu cầu xét tính đơn điệu của hàm số f(x) = x3 - 3x2 + 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Ngoài việc xét tính đơn điệu, câu 31 có thể yêu cầu:
Để giải các bài tập này, bạn cần:
Khi giải bài tập về đạo hàm và tính đơn điệu, bạn cần chú ý:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, bạn sẽ hiểu rõ hơn về Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao và tự tin giải các bài tập tương tự. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập