Bài tập Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to 2} {{{x^3} - 8} \over {{x^2} - 4}}\)
Lời giải chi tiết:
Dạng \({0 \over 0}\) ta phân tích tử và mẫu ra thừa số :
\(\eqalign{& \mathop {\lim }\limits_{x \to 2} {{{x^3} - 8} \over {{x^2} - 4}} \cr &= \mathop {\lim }\limits_{x \to 2} {{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)}} \cr & = \mathop {\lim }\limits_{x \to 2} {{{x^2} + 2x + 4} \over {x + 2}} = 3 \cr} \)
\(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}\cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{\left( {x + 3} \right)\left( {2x - 1} \right)} \over {{{\left( {x + 3} \right)}^2}}} \cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2x - 1} \over {x + 3}} = - \infty \cr} \)
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \left( {2x - 1} \right) = - 7 < 0\) \(\text{ và }\,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ +}} \left( {x + 3} \right) = 0;\) \({\left( {x + 3} \right)} > 0,\forall x > - 3\)
\(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}} \cr &= \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{\left( {x + 3} \right)\left( {2x - 1} \right)} \over {{{\left( {x + 3} \right)}^2}}} \cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2x - 1} \over {x + 3}} = + \infty \cr} \)
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {2x - 1} \right) = - 7 < 0\) \(\text{ và }\,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {x + 3} \right) = 0;\) \(x + 3 < 0, \forall x<-3\)
\(\mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^3} + 1} - 1} \over {{x^2} + x}}\)
Phương pháp giải:
Nhân cả tử và mẫu với biểu thức \(\sqrt {{x^3} + 1} + 1\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^3} + 1} - 1} \over {{x^2} + x}}\cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^3} + 1} - 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}{{x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}\cr &= \mathop {\lim }\limits_{x \to 0} {{{x^3}} \over {x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} {{{x^2}} \over {\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} = 0 \cr} \)
Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao là một bài toán thuộc chương trình học về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Thông thường, câu 38 trang 166 sẽ đưa ra một hàm số cụ thể và yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Để giải quyết bài toán này, chúng ta cần thực hiện các bước sau:
Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2.
Lời giải:
f'(x) = 3x2 - 6x
Kiến thức về đạo hàm có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:
Để học tốt hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:
Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Việc nắm vững kiến thức này sẽ là nền tảng vững chắc cho việc học tập các môn học khác và ứng dụng vào thực tế.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập