Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài.
Chứng minh rằng :
\(\cos {\pi \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \)
Lời giải chi tiết:
\(\eqalign{ & {\cos ^2}{\pi \over {{2^3}}} = {\cos ^2}{\pi \over 8} = {{1 + \cos {\pi \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} \cr&= {{2 + \sqrt 2 } \over 4} \cr & \Rightarrow \cos {\pi \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr} \)
\(\cos {\pi \over {{2^n}}} = {1 \over 2}\underbrace {\sqrt {2 + \sqrt {2 + \sqrt {....... + \sqrt 2 } } } }_{n - 1\,\text{ dấu căn}}\) (1) với mọi số nguyên n ≥ 2.
Lời giải chi tiết:
Với n = 2 ta có \(\cos {\pi \over 4} = {1 \over 2}\sqrt 2 \,\,\left( 1 \right)\) đúng.
Giả sử (1) đúng với n = k tức là :
\(\cos {\pi \over {{2^k}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \) (k – 1 dấu căn)
Với n = k + 1 ta có
\(\eqalign{ & {\cos ^2}{\pi \over {{2^{k + 1}}}} = {1 \over 2}\left( {1 + \cos {\pi \over {{2^k}}}} \right) \cr & = {1 \over 2}\left( {1 + {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right) \cr & = {1 \over 4}\left( {2 + \sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right) \cr & \Rightarrow \cos {\pi \over {{2^{k + 1}}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \,\,\left( {k\,\text{ dấu căn}} \right) \cr} \)
Vậy (1) đúng với n = k + 1 do đó (1) đúng với \(∀n ≥ 2\).
Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định khoảng đồng biến, nghịch biến, cực trị của hàm số, từ đó vẽ được đồ thị hàm số một cách chính xác.
Thông thường, câu 11 trang 225 sẽ đưa ra một hàm số cụ thể, ví dụ:
f(x) = x3 - 3x2 + 2
Yêu cầu của bài toán có thể là:
Để giải quyết bài toán này, chúng ta cần thực hiện các bước sau:
1. Tập xác định: D = R
2. Đạo hàm: f'(x) = 3x2 - 6x
3. Điểm cực trị: Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Vậy, hàm số có hai điểm cực trị: x1 = 0 và x2 = 2
4. Khoảng đồng biến, nghịch biến:
5. Vẽ đồ thị: (Không thể hiển thị đồ thị trực tiếp ở đây, bạn có thể sử dụng các công cụ vẽ đồ thị trực tuyến hoặc phần mềm toán học để vẽ đồ thị hàm số).
Khi giải các bài toán về khảo sát hàm số, cần chú ý:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao hoặc các đề thi thử.
tusach.vn hy vọng với lời giải chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về cách giải Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao và tự tin hơn trong các kỳ thi sắp tới.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập