Câu 4 trang 100 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đồ thị hàm số, hoặc các phép biến đổi đại số để tìm ra đáp án chính xác.
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chứng minh rằng
Đề bài
Chứng minh rằng với mọi số nguyên \(n ≥ 2\), ta luôn có đẳng thức sau :
\(\left( {1 - {1 \over 4}} \right)\left( {1 - {1 \over 9}} \right)...\left( {1 - {1 \over {{n^2}}}} \right) = {{n + 1} \over {2n}}\)
Lời giải chi tiết
+) Với \(n = 2\) ta có \(1 - {1 \over 4} = {3 \over 4}\) (đúng). Vậy (1) đúng với \(n = 2\)
+) Giả sử (1) đúng với \(n = k\), tức là ta có
\(\left( {1 - {1 \over 4}} \right)\left( {1 - {1 \over 9}} \right)...\left( {1 - {1 \over {{k^2}}}} \right) = {{k + 1} \over {2k}}\)
+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :
\(\left( {1 - {1 \over 4}} \right)\left( {1 - {1 \over 9}} \right)...\left( {1 - {1 \over {{{\left( {k + 1} \right)}^2}}}} \right) = {{k + 2} \over {2\left( {k + 1} \right)}}\)
Thật vậy theo giả thiết qui nạp ta có :
\(\eqalign{& \left( {1 - {1 \over 4}} \right)\left( {1 - {1 \over 9}} \right)...\left( {1 - {1 \over {{k^2}}}} \right)\left( {1 - {1 \over {{{\left( {k + 1} \right)}^2}}}} \right) \cr & = {{k + 1} \over {2k}}\left( {1 - {1 \over {{{\left( {k + 1} \right)}^2}}}} \right) \cr & = {{k + 1} \over {2k}}.{{{k^2} + 2k} \over {{{\left( {k + 1} \right)}^2}}} ={{k + 1} \over {2k}}.{{k.\left( {k + 2} \right)} \over {{{\left( {k + 1} \right)}^2}}}= {{k + 2} \over {2\left( {k + 1} \right)}} \cr} \)
Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi \(n ≥ 2\)
Câu 4 trang 100 SGK Đại số và Giải tích 11 Nâng cao thường thuộc các chủ đề như hàm số bậc hai, hàm số mũ, hàm số logarit, hoặc các bài toán về phương trình, bất phương trình. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản và kỹ năng giải toán liên quan.
Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn tránh sai sót và tìm ra phương pháp giải phù hợp. Ví dụ, đề bài có thể yêu cầu tìm tập xác định của hàm số, vẽ đồ thị hàm số, hoặc giải phương trình, bất phương trình.
Sau khi đã hiểu rõ yêu cầu của bài toán, hãy áp dụng các kiến thức và công thức liên quan để giải quyết. Ví dụ, nếu đề bài yêu cầu tìm tập xác định của hàm số, bạn cần sử dụng các điều kiện để hàm số có nghĩa. Nếu đề bài yêu cầu vẽ đồ thị hàm số, bạn cần xác định các điểm đặc biệt của đồ thị, như điểm cực trị, điểm uốn, và giao điểm với các trục tọa độ.
Đề bài: Cho hàm số y = x2 - 4x + 3. Tìm tọa độ đỉnh của parabol.
Giải:
Khi giải bài tập, hãy chú ý đến các điều kiện của bài toán và kiểm tra lại kết quả để đảm bảo tính chính xác. Ngoài ra, hãy luyện tập thường xuyên để nâng cao kỹ năng giải toán và làm quen với các dạng bài tập khác nhau.
Tusach.vn là một website cung cấp tài liệu học tập toán học uy tín, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật thường xuyên. Chúng tôi hy vọng rằng những lời giải chi tiết và hướng dẫn giải bài tập tại tusach.vn sẽ giúp bạn học tập tốt hơn và đạt kết quả cao trong môn toán.
Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập