Bài tập này thuộc chương trình Đại số và Giải tích 11 Nâng cao, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến...
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm limun với
\({u_n} = {{{n^2} - 3n + 5} \over {2{n^2} - 1}}\)
Phương pháp giải:
Chia cả tử và mẫu của biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n và sử dụng giới hạn \(\lim \dfrac{1}{{{n^k}}} = 0\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& \lim{u_n} = \lim {{{n^2}\left( {1 - {3 \over n} + {5 \over {{n^2}}}} \right)} \over {{n^2}\left( {2 - {1 \over {{n^2}}}} \right)}} \cr &= \lim {{1 - {3 \over n} + {5 \over {{n^2}}}} \over {2 - {1 \over {{n^2}}}}} \cr & = {{\lim 1 - \lim {3 \over n} + \lim {5 \over {{n^2}}}} \over {\lim 2 - \lim {1 \over {{n^2}}}}}\cr & = {{1 - 0 + 0} \over {2 - 0}} = {1 \over 2} \cr} \)
\({u_n} = {{ - 2{n^2} + n + 2} \over {3{n^4} + 5}}\)
Lời giải chi tiết:
\(\displaystyle \lim {u_n} = \lim {{{n^4}\left( {{{ - 2} \over {{n^2}}} + {1 \over {{n^3}}} + {{ 2} \over {{n^4}}}} \right)} \over {{n^4}\left( {3 + {5 \over {{n^4}}}} \right)}} \) \(\displaystyle = \lim {{{{ - 2} \over {{n^2}}} + {1 \over {{n^3}}} + {{ 2} \over {{n^4}}}} \over {3 + {5 \over {{n^4}}}}} ={{0+0+0}\over {3+0}}\) \( = {0 \over 3} = 0\)
\({u_n} = {{\sqrt {2{n^2} - n} } \over {1 - 3{n^2}}}\)
Lời giải chi tiết:
\(\lim {u_n} = \lim \dfrac{{\sqrt {2{n^2} - n} }}{{1 - 3{n^2}}}\)
\(\begin{array}{l} = \lim \dfrac{{\dfrac{{\sqrt {2{n^2} - n} }}{{{n^2}}}}}{{\dfrac{{1 - 3{n^2}}}{{{n^2}}}}} = \lim \dfrac{{\sqrt {\dfrac{{2{n^2} - n}}{{{n^4}}}} }}{{\dfrac{1}{{{n^2}}} - 3}}\\ = \lim \dfrac{{\sqrt {\dfrac{2}{{{n^2}}} - \dfrac{1}{{{n^3}}}} }}{{\dfrac{1}{{{n^2}}} - 3}} = \dfrac{{\sqrt {0 - 0} }}{{0 - 3}} = 0\end{array}\)
\({u_n} = {{{4^n}} \over {{{2.3}^n} + {4^n}}}\)
Phương pháp giải:
Chia cả tử và mẫu \(u_n\) cho \(4^n\).
Lời giải chi tiết:
Chia cả tử và mẫu \(u_n\) cho \(4^n\) ta được:
\(\begin{array}{l}\lim {u_n} = \lim \dfrac{{{4^n}}}{{{{2.3}^n} + {4^n}}}\\ = \lim \dfrac{{{4^n}}}{{{4^n}\left( {2.\dfrac{{{3^n}}}{{{4^n}}} + 1} \right)}}\\ = \lim \dfrac{1}{{2{{\left( {\dfrac{3}{4}} \right)}^n} + 1}} = \dfrac{1}{{2.0 + 1}} = 1\end{array}\)
Câu 6 trang 134 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về hàm số, đạo hàm và các ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh phải phân tích đề bài, xác định đúng các yếu tố cần tìm và áp dụng các công thức, định lý phù hợp để giải quyết.
Để hiểu rõ hơn về bài tập này, chúng ta cần xem xét nội dung cụ thể của nó. Thông thường, câu 6 trang 134 sẽ yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Để giải quyết câu 6 trang 134 SGK Đại số và Giải tích 11 Nâng cao một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Giả sử bài tập yêu cầu tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x3 - 3x2 + 2 trên đoạn [-1; 3].
Giải:
Khi giải các bài tập về đạo hàm, bạn cần lưu ý một số điểm sau:
Tusach.vn là một website cung cấp tài liệu học tập trực tuyến uy tín, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật thường xuyên. Chúng tôi hy vọng rằng lời giải chi tiết và phương pháp giải bài tập Câu 6 trang 134 SGK Đại số và Giải tích 11 Nâng cao trên tusach.vn sẽ giúp bạn học tập hiệu quả và đạt kết quả tốt nhất.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập