Bài tập này thuộc chương trình Đại số và Giải tích 11 Nâng cao, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến...
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và phương pháp giải bài tập hiệu quả.
Hãy giải bất phương trình :
\(f'\left( x \right) > 0\)
Phương pháp giải:
Tính f'(x) và giải các bpt.
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 3{x^2} - 6x\)
\(f'\left( x \right) > 0 \Leftrightarrow 3{x^2} - 6x > 0 \) \(\Leftrightarrow x < 0\,\text{ hoặc }\,x > 2\)
\(f'\left( x \right) \le 3\)
Lời giải chi tiết:
\(f'\left( x \right) \le 3 \Leftrightarrow 3{x^2} - 6x \le 3 \)
\(\Leftrightarrow {x^2} - 2x - 1 \le 0 \) \(\Leftrightarrow 1 - \sqrt 2 \le x \le 1 + \sqrt 2 \)
Câu 21 trang 204 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về hàm số, đạo hàm và các ứng dụng của đạo hàm. Bài viết này sẽ cung cấp lời giải chi tiết, phương pháp giải và các lưu ý quan trọng để giúp bạn hiểu rõ và giải quyết bài tập một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại nội dung của câu 21 trang 204 SGK Đại số và Giải tích 11 Nâng cao:
(Giả sử nội dung bài tập là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Để tìm các điểm cực trị của hàm số, chúng ta cần thực hiện các bước sau:
Áp dụng phương pháp trên, ta giải bài tập như sau:
Bước 1: Tính đạo hàm bậc nhất
f'(x) = 3x2 - 6x
Bước 2: Tìm các điểm làm đạo hàm bậc nhất bằng 0
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Bước 3: Xét dấu đạo hàm bậc nhất
Ta có bảng xét dấu:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Từ bảng xét dấu, ta thấy:
Bước 4: Tính đạo hàm bậc hai
f''(x) = 6x - 6
Bước 5: Kiểm tra dấu của đạo hàm bậc hai tại các điểm dừng
f''(0) = -6 < 0 => x = 0 là điểm cực đại
f''(2) = 6 > 0 => x = 2 là điểm cực tiểu
Kết luận
Hàm số y = f(x) = x3 - 3x2 + 2 có:
Khi giải các bài tập về cực trị hàm số, bạn cần lưu ý:
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về cách giải Câu 21 trang 204 SGK Đại số và Giải tích 11 Nâng cao. Hãy luyện tập thêm nhiều bài tập tương tự để nâng cao kỹ năng giải toán của mình!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập