Bài tập Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Giả sử một con tàu vũ trụ được phóng lên từ mũi Ca-na-vơ-ran (Canaveral) ở Mĩ. Nó chuyển động theo một quỹ đạo được mô tả trên một bản đồ phẳng (quanh đường xích đạo) của mặt đất
Giả thiết rằng con tàu đi vào quỹ đạo ngay từ khi phóng lên tại mũi Ca-na-vơ-ran (tức là ứng với \(t = 0\)). Hãy tính khoảng cách từ điểm \(C\) đến đường thẳng \(∆\), trong đó \(C\) là điểm trên bản đồ biểu diễn cho mũi Ca-na-vơ-ran.
Lời giải chi tiết:
Vì \(t = 0\) nên \(d = 4000\cos \left( { - {{10\pi } \over {45}}} \right) = 4000\cos {{2\pi } \over 9}.\)
Do đó :
\(h = |d| ≈ 3064,178 (km)\)
Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = 2000\).
Lời giải chi tiết:
\(\eqalign{& d = 2000 \cr&\Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = 2000\cr&\Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = {1 \over 2} \cr & \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm {\pi \over 3} + k2\pi \cr&\Leftrightarrow t = 10 \pm 15 + 90k \cr&\Leftrightarrow \left[ {\matrix{{t = 25 + 90k} \cr {t = - 5 + 90k} \cr} } \right. \cr} \)
Chú ý rằng \(t > 0\) ta thấy ngay giá trị nhỏ nhất của \(t\) là \(t = 25\).
Vậy \(d = 2000 (km)\) xảy ra lần đầu tiên sau khi phóng con tàu vào quỹ đạo được \(25\) phút.
Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = -1236\).
(Tính chính xác các kết quả đến hàng phần nghìn).
Lời giải chi tiết:
\(\eqalign{& d = - 1236\cr& \Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 1236 \cr&\Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 0,309 \cr & \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm \alpha + k2\pi \cr&\left( {\text{ với }\,k \in \mathbb Z\,\text{ và }\,\cos \alpha = - 0,309} \right) \cr & \Leftrightarrow t = \pm {{45} \over \pi }\alpha + 10 + 90k \cr} \)
Sử dụng bảng số hoặc máy tính bỏ túi, ta có thể chọn \(α ≈ 1,885\). Khi đó ta có :
\(t ≈ ± 27,000 + 10 + 90k\), tức là \(t ≈ - 17,000 + 90k\) hoặc \(t ≈ 37,000 + 90k\)
Dễ thấy giá trị dương nhỏ nhất của \(t\) là \(37,000\).
Vậy \(d = -1236 (km)\) xảy ra lần đầu tiên là \(37,000\) phút sau khi con tàu được phóng vào quỹ đạo.
Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, chúng ta cần nắm vững các kiến thức cơ bản sau:
Thông thường, bài toán Câu 24 trang 31 sẽ yêu cầu một trong các nhiệm vụ sau:
Giả sử câu 24 yêu cầu tìm tọa độ đỉnh của parabol y = x2 - 4x + 3.
Bước 1: Xác định hệ số a, b, c
Trong hàm số y = x2 - 4x + 3, ta có a = 1, b = -4, c = 3.
Bước 2: Tính hoành độ đỉnh x0
x0 = -b / 2a = -(-4) / (2 * 1) = 2
Bước 3: Tính tung độ đỉnh y0
y0 = f(x0) = f(2) = 22 - 4 * 2 + 3 = 4 - 8 + 3 = -1
Bước 4: Kết luận
Vậy tọa độ đỉnh của parabol là I(2; -1).
Tusach.vn là website cung cấp tài liệu học tập và giải bài tập môn Toán uy tín, chất lượng. Chúng tôi luôn cập nhật những lời giải chi tiết, dễ hiểu, giúp các em học sinh học tốt môn Toán. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Lưu ý: Đây chỉ là một ví dụ minh họa. Lời giải chi tiết cho Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao sẽ phụ thuộc vào nội dung cụ thể của bài toán. Hãy tham khảo SGK và các tài liệu tham khảo khác để có lời giải chính xác nhất.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập