Bài tập Câu 35 trang 42 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Dùng công thức hạ bậc để giải các phương trình sau :
\({\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x\)
Lời giải chi tiết:
\(\eqalign{& {\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x \cr & \Leftrightarrow {1 \over 2}\left( {1 - \cos 8x} \right) + {1 \over 2}\left( {1 - \cos 6x} \right) = {1 \over 2}\left( {1 - \cos 4x} \right) + {1 \over2}\left( {1 - \cos 2x} \right) \cr & \Leftrightarrow 1 - \cos 8x + 1 - \cos 6x = 1 - \cos 4x + 1 - \cos 2x\cr& \Leftrightarrow \cos 8x + \cos 6x = \cos 4x + \cos 2x \cr & \Leftrightarrow 2\cos 7x\cos x = 2\cos 3x\cos x \cr & \Leftrightarrow 2\cos x\left( {\cos 7x - \cos 3x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 7x = \cos 3x} \cr} } \right.\cr& \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right.\cr&\Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\7x = 3x + k2\pi \\7x = - 3x + k2\pi \end{array} \right.\cr&\Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right.\,\,\,k \in\mathbb Z \cr} \)
\({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2 \cr & \Leftrightarrow {{1 + \cos 2x} \over 2} + {{1 + \cos 4x} \over 2} + {{1 + \cos 6x} \over 2} + {{1 + \cos 8x} \over 2} = 2 \cr & \Leftrightarrow \left( {\cos 2x + \cos 4x} \right) + \left( {\cos 6x + \cos 8x} \right) = 0 \cr & \Leftrightarrow 2\cos 3x\cos x + 2\cos 7x\cos x = 0 \cr & \Leftrightarrow 2\cos x\left( {\cos 3x + \cos 7x} \right) = 0 \cr & \Leftrightarrow 4\cos x\cos 5x\cos 2x = 0 \cr&\Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 2x = 0} \cr {\cos 5x = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = {\pi \over 4} + k{\pi \over 2}} \cr {x = {\pi \over {10}} + k{\pi \over 5}} \cr} } \right.\,\,\left( {k \in\mathbb Z} \right) \cr} \)
Câu 35 trang 42 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Đề bài thường yêu cầu xác định các yếu tố của parabol (đỉnh, trục đối xứng, giao điểm) hoặc tìm điều kiện để parabol thỏa mãn một tính chất nào đó (ví dụ: đi qua một điểm, tiếp xúc với một đường thẳng).
Giả sử đề bài: Cho hàm số y = x2 - 4x + 3. Tìm tọa độ đỉnh của parabol và vẽ đồ thị hàm số.
Ngoài dạng bài tập tìm tọa độ đỉnh và vẽ đồ thị, còn có các dạng bài tập khác liên quan đến hàm số bậc hai như:
Để giải quyết các dạng bài tập này, học sinh cần nắm vững các kiến thức về hàm số bậc hai và các phép biến đổi đồ thị. Ngoài ra, cần luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
Khi giải bài tập, cần chú ý:
Tusach.vn hy vọng với lời giải chi tiết và hướng dẫn giải bài tập này, các em học sinh sẽ hiểu rõ hơn về hàm số bậc hai và tự tin làm bài tập.
Nếu có bất kỳ thắc mắc nào, hãy liên hệ với Tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập