Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Tìm đạo hàm đến cấp được nêu kèm theo của các hàm số sau (n ϵ N*)
\(y=\sin x,\;y'''\)
Giải chi tiết:
\(\begin{array}{l}y' = \cos x\\y" = - \sin x\\y''' = - \cos x\end{array}\)
\(y = \sin x\sin 5x,{y^{\left( 4 \right)}}\)
Giải chi tiết:
\(\begin{array}{l}y = \frac{1}{2}\left( {\cos 4x - \cos 6x} \right)\\y' = - 2\sin 4x + 3\sin 6x\\y" = - 8\cos 4x + 18\cos 6x\\y'" = 32\sin 4x - 108\sin 6x\\{y^{\left( 4 \right)}} = 128\cos 4x - 648\cos 6x\end{array}\)
\(y = {\left( {4 - x} \right)^5},{y^{\left( n \right)}}\)
Giải chi tiết:
\(\begin{array}{l}y' = - 5{\left( {4 - x} \right)^4}\\y" = 20{\left( {4 - x} \right)^3}\\y"' = - 60{\left( {4 - x} \right)^2}\\{y^{\left( 4 \right)}} = 120\left( {4 - x} \right)\\{y^{\left( 5 \right)}} = - 120\\{y^{\left( n \right)}} = 0\,\left( {\forall n \ge 6} \right)\end{array}\)
\(y = {1 \over {2 + x}},{y^{\left( n \right)}}\)
Giải chi tiết:
\(\begin{array}{l}y = \frac{1}{{x + 2}} = {\left( {x + 2} \right)^{ - 1}}\\y' = - 1{\left( {x + 2} \right)^{ - 2}}\\y" = \left( { - 1} \right)\left( { - 2} \right){\left( {x + 2} \right)^{ - 3}},...\end{array}\)
Bằng qui nạp ta chứng minh được : \({y^{\left( n \right)}} = \left( { - 1} \right)\left( { - 2} \right)...\left( { - n} \right).{\left( {x + 2} \right)^{ - n - 1}}\)
\(= {\left( { - 1} \right)^n}.\frac{{n!}}{{{{\left( {x + 2} \right)}^{n + 1}}}}\)
\(y = {1 \over {2x + 1}},{y^{\left( n \right)}}\)
Giải chi tiết:
\(\begin{array}{l}y = {\left( {2x + 1} \right)^{ - 1}}\\y' = \left( { - 1} \right)\left( {2{{\left( {2x + 1} \right)}^{ - 2}}} \right)\\y" = \left( { - 1} \right)\left( { - 2} \right){.2^2}{\left( {2x + 1} \right)^{ - 3}},...\end{array}\)
Bằng qui nạp ta chứng minh được :
\({y^{\left( n \right)}} = {\left( { - 1} \right)^n}.\frac{{{2^n}.n!}}{{{{\left( {2x + 1} \right)}^{n + 1}}}}\)
\(y = {\cos ^2}x,{y^{\left( {2n} \right)}}\)
Giải chi tiết:
Ta có:
\(\begin{array}{l}y' = - \sin 2x\\y" = - 2\cos 2x\\y"' = {2^2}\sin 2x\\{y^{\left( 4 \right)}} = {2^3}\cos 2x\\{y^{\left( 5 \right)}} = - {2^4}\sin 2x\\{y^{\left( 6 \right)}} = - {2^5}\cos 2x,...\end{array}\)
Bằng qui nạp ta chứng minh được :
\({y^{\left( {2n} \right)}} = {\left( { - 1} \right)^n}{.2^{2n - 1}}\cos 2x\)
Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao thường liên quan đến việc xét tính đơn điệu của hàm số. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức sau:
Giả sử câu 51 yêu cầu xét tính đơn điệu của hàm số f(x) = x3 - 3x2 + 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Để giải nhanh các bài tập về tính đơn điệu, bạn nên:
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học tập hiệu quả và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập