Bài tập này thuộc chương trình Đại số và Giải tích 11 Nâng cao, tập trung vào việc rèn luyện kỹ năng về hàm số, đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập hiệu quả.
Hãy chứng minh định lí 3.
Đề bài
Hãy chứng minh định lí 3: \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\).
Lời giải chi tiết
Ta sẽ chứng minh \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\) (1)
+) Với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.
+) Với \(n = 1\), ta có \({S_1} = {u_1} = {{1\left( {{u_1} + {u_1}} \right)} \over 2}.\) Như vậy (1) đúng với \(n = 1\).
+) Giả sử (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:
\({S_k} = {{k\left( {{u_1} + {u_k}} \right)} \over 2}\)
+) Ta chứng minh (1) đúng với \(n=k+1\)
\(\eqalign{& {S_{k + 1}} = {S_k} + {u_{k + 1}} \cr & = {{k\left( {{u_1} + {u_k}} \right)} \over 2} + {u_{k + 1}} \cr & = {{k\left( {{u_1} + {u_{k + 1}} - d} \right) + 2{u_{k + 1}}} \over 2} \cr & = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_{k + 1}} - kd} \over 2} \cr & = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_1}} \over 2} \cr & = {{\left( {k + 1} \right)\left( {{u_1} + {u_{k + 1}}} \right)} \over 2} \cr} \)
Vậy (1) đúng với \(n = k + 1\)
Vậy (1) đúng với mọi \(n \in \mathbb N^*\).
Cách khác :
Ta có:
\(\eqalign{& \left\{ {\matrix{{{S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}} \cr {{S_n} = {u_n} + {u_{n - 1}} + ... + {u_2} + {u_1}} \cr} } \right. \cr & \Rightarrow 2{S_n} = \left( {{u_1} + {u_n}} \right) + \left( {{u_2} + {u_{n - 1}}} \right) \cr&+ ... + \left( {{u_{n - 1}} + {u_2}} \right) + \left( {{u_n} + {u_1}}\right) \cr} \)
Mà \({u_1} + {u_n}= {u_2} + {u_{n - 1}} \)\(= {u_3} + {u_{n - 2}} = ... = {u_n} + {u_1}\)
Do đó \(2{S_n} = n\left( {{u_1} + {u_n}} \right)\)
\(\Rightarrow {S_n} = {n \over 2}\left( {{u_1} + {u_n}} \right)\)
Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các bài toán liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Trước khi bắt tay vào giải bài tập, điều quan trọng là phải đọc kỹ đề bài, xác định rõ yêu cầu của bài toán, và lập kế hoạch giải cụ thể. Ví dụ, nếu đề bài yêu cầu tìm đạo hàm của một hàm số, bạn cần xác định hàm số đó là gì và áp dụng các quy tắc tính đạo hàm phù hợp. Nếu đề bài yêu cầu xét tính đơn điệu của hàm số, bạn cần tính đạo hàm của hàm số, xét dấu đạo hàm, và kết luận về tính đơn điệu của hàm số.
(Giả sử đề bài Câu 26 trang 115 là: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm của hàm số và xét tính đơn điệu của hàm số.)
Bước 1: Tính đạo hàm của hàm số
y' = 3x2 - 6x
Bước 2: Xét dấu đạo hàm
Để xét dấu đạo hàm, ta giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta lập bảng xét dấu đạo hàm:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | Giảm | Tăng |
Bước 3: Kết luận về tính đơn điệu
Hàm số y = x3 - 3x2 + 2 đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Khi giải các bài tập về đạo hàm và tính đơn điệu của hàm số, bạn cần lưu ý những điều sau:
Tusach.vn là một website cung cấp tài liệu học tập toán học uy tín, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật thường xuyên. Chúng tôi hy vọng rằng lời giải chi tiết của Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao sẽ giúp bạn hiểu rõ hơn về kiến thức và phương pháp giải bài tập. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập