Bài tập Câu 5 trang 91 SGK Hình học 11 Nâng cao là một bài toán quan trọng trong chương trình học Hình học không gian. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, đường thẳng và mặt phẳng để giải quyết.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập này.
Trong không gian cho tam giác ABC.
Chứng minh rằng nếu điểm M thuộc mp(ABC) thì có ba số x, y, z mà x + y + z = 1 sao cho \(\overrightarrow {OM} = \overrightarrow {xOA} + \overrightarrow {yOB} + \overrightarrow {zOC} \) với mọi điểm O.
Giải chi tiết:
Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) là hai vecto không cùng phương nên điểm M thuộc mp(ABC) khi và chỉ khi có \(\overrightarrow {AM} = l\overrightarrow {AB} + m\overrightarrow {AC} \)
hay \(\overrightarrow {OM} - \overrightarrow {OA} = l\left( {\overrightarrow {OB} - \overrightarrow {OA} } \right) + m\left( {\overrightarrow {OC} - \overrightarrow {OA} } \right)\) với mọi điểm O
tức là \(\overrightarrow {OM} = \left( {1 - l - m} \right)\overrightarrow {OA} + l\overrightarrow {OB} + m\overrightarrow {OC} \)
đặt \(1 - l - m = x,l = y,m = z\) thì \(\overrightarrow {OM} = x\overrightarrow {OA} + y\overrightarrow {OB} + z\overrightarrow {OC} \) với \(x + y + z = 1.\)
Ngược lại, nếu có một điểm O trong không gian saao cho \(\overrightarrow {OM} = \overrightarrow {xOA} + \overrightarrow {yOB} + \overrightarrow {zOC} ,\) trong đó x + y + z = 1 thì điểm M thuộc mp(ABC).
Giải chi tiết:
Giả sử \(\overrightarrow {OM} = x\overrightarrow {OA} + y\overrightarrow {OB} + z\overrightarrow {OC} \) với \(x + y + z = 1,\) ta có :
\(\eqalign{ & \overrightarrow {OM} = \left( {1 - y - z} \right)\overrightarrow {OA} + y\overrightarrow {OB} + z\overrightarrow {OC} \cr & hay\,\overrightarrow {OM} - \overrightarrow {OA} = y\overrightarrow {AB} + z\overrightarrow {AC} \cr & \text{ tức là }\overrightarrow {AM} = y\overrightarrow {AB} + z\overrightarrow {AC} \cr} \)
Mà \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên M thuộc mặt phẳng (ABC)
Câu 5 trang 91 SGK Hình học 11 Nâng cao thường xoay quanh các bài toán liên quan đến việc xác định mối quan hệ giữa đường thẳng và mặt phẳng, hoặc giữa hai mặt phẳng trong không gian. Để giải quyết những bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Để giải Câu 5 trang 91 SGK Hình học 11 Nâng cao một cách hiệu quả, bạn có thể áp dụng các bước sau:
Đề bài: Cho điểm A(1; 2; 3) và mặt phẳng (P): 2x - y + z - 1 = 0. Hãy tìm hình chiếu vuông góc của điểm A lên mặt phẳng (P).
Giải:
Khi giải các bài toán về Hình học không gian, đặc biệt là các bài toán liên quan đến vectơ, bạn cần chú ý đến dấu của các vectơ và các phép toán vectơ. Việc vẽ hình chính xác và lựa chọn hệ tọa độ phù hợp cũng rất quan trọng để giải quyết bài toán một cách hiệu quả.
Câu 5 trang 91 SGK Hình học 11 Nâng cao là một bài tập điển hình để rèn luyện kỹ năng giải toán Hình học không gian. Bằng cách nắm vững kiến thức cơ bản, áp dụng phương pháp giải đúng đắn và luyện tập thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách tự tin và hiệu quả. tusach.vn hy vọng những giải thích và ví dụ trên sẽ giúp bạn hiểu rõ hơn về bài tập này và đạt kết quả tốt trong môn Hình học.
| Công thức | Mô tả |
|---|---|
| Tích vô hướng | a.b = |a||b|cos(θ) |
| Tích có hướng | [a, b] là vectơ vuông góc với cả a và b |
| Phương trình mặt phẳng | Ax + By + Cz + D = 0 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập