Chào mừng bạn đến với lời giải chi tiết Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao trên tusach.vn.
Chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to + \infty } {{{x^3} - 5} \over {{x^2} + 1}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to + \infty } {{{x^3} - 5} \over {{x^2} + 1}} = \mathop {\lim }\limits_{x \to + \infty } {x}{{{x^2}\left( {1 - {5 \over {{x^3}}}} \right)} \over {{x^2}\left( {1 + {1 \over {{x^2}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to + \infty } x.{{1 - {5 \over {{x^3}}}} \over {1 + {1 \over {{x^2}}}}} = + \infty \cr & \text{vì}\,\mathop {\lim }\limits_{x \to + \infty } x = + \infty \,\text{và}\,\mathop {\lim }\limits_{x \to + \infty } {{1 - {5 \over {{x^3}}}} \over {1 + {1 \over {{x^2}}}}} = 1 > 0 \cr} \)
Cách khác:

\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^4} - x} } \over {1 - 2x}}\)
Lời giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^4} - x} }}{{1 - 2x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^4}\left( {1 - \frac{1}{{{x^3}}}} \right)} }}{{1 - 2x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}\sqrt {1 - \frac{1}{{{x^3}}}} }}{{x\left( {\frac{1}{x} - 2} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \left[ {x.\frac{{\sqrt {1 - \frac{1}{{{x^3}}}} }}{{\frac{1}{x} - 2}}} \right]\end{array}\)
Ta có
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } x = - \infty \\\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 - \frac{1}{{{x^3}}}} }}{{\frac{1}{x} - 2}} = \frac{1}{{ - 2}} < 0\end{array}\)
Do đó \(\mathop {\lim }\limits_{x \to - \infty } \left( {x.\frac{{\sqrt {1 - \frac{1}{{{x^3}}}} }}{{\frac{1}{x} - 2}}} \right) = + \infty \)
Vậy \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^4} - x} } \over {1 - 2x}}= + \infty \)
Cách khác:
Với mọi \(x < 0\), ta có \({{\sqrt {{x^4} - x} } \over {1 - 2x}} = {{{x^2}\sqrt {1 - {1 \over {{x^3}}}} } \over {1 - 2x}} = {{\sqrt {1 - {1 \over {{x^3}}}} } \over {{1 \over {{x^2}}} - {2 \over x}}}\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {1 - {1 \over {{x^3}}}} = 1,\) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{1 \over {{x^2}}} - {2 \over x}} \right) = 0\,\text{ và }\,{1 \over {{x^2}}} - {2 \over x} > 0\) với mọi \(x < 0\)
Nên \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^4} - x} } \over {1 - 2x}} = + \infty \)
Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học, thường liên quan đến các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác tùy thuộc vào nội dung cụ thể của bài. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản, công thức và phương pháp giải liên quan.
Giả sử câu 36 yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1. Đây là một ví dụ minh họa, nội dung thực tế sẽ khác.
Để giải bài tập này, chúng ta sẽ sử dụng các quy tắc đạo hàm cơ bản:
Áp dụng các quy tắc đạo hàm trên, ta có:
f'(x) = d/dx (x3) - d/dx (2x2) + d/dx (5x) - d/dx (1)
f'(x) = 3x2 - 4x + 5 - 0
f'(x) = 3x2 - 4x + 5
Để giúp bạn luyện tập và nắm vững kiến thức, dưới đây là một số bài tập tương tự:
tusach.vn là một nguồn tài liệu học tập uy tín, cung cấp:
Hy vọng lời giải chi tiết Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao trên tusach.vn sẽ giúp bạn hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Kiến thức liên quan |
|---|---|
| Đạo hàm | Quy tắc đạo hàm, đạo hàm của hàm đa thức |
| Hàm số | Định nghĩa hàm số, các loại hàm số |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập