Chào mừng bạn đến với tusach.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho Câu 40 trang 46 sách Đại số và Giải tích 11 Nâng cao. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán hiệu quả.
Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho
\(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
\(2{\sin ^2}x - 3\cos x = 2\)
\(\begin{array}{l} \Leftrightarrow 2\left( {1 - {{\cos }^2}x} \right) - 3\cos x - 2 = 0\\ \Leftrightarrow 2 - 2{\cos ^2}x - 3\cos x - 2 = 0\\ \Leftrightarrow - 2{\cos ^2}x - 3\cos x = 0\\ \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0\\ \Leftrightarrow \cos x\left( {2\cos x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\2\cos x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = - \frac{3}{2}\left( {loai} \right)\end{array} \right.\\ \Leftrightarrow x = {90^0} + k{180^0},k \in Z\\{0^0} \le x \le {360^0}\\ \Leftrightarrow {0^0} \le {90^0} + k{180^0} \le {360^0}\\ \Leftrightarrow - {90^0} \le k{180^0} \le {270^0}\\ \Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}\end{array}\)
Mà \(k \in Z \Rightarrow k \in \left\{ {0;1} \right\}\)
+) Với k=0 thì \(x = {90^0}\)
+) Với k=1 thì \(x = {270^0}\)
Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).
\(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\).
Ta có :
\(\begin{array}{l}\tan x + 2\cot x = 3\\ \Leftrightarrow \tan x + \frac{2}{{\tan x}} - 3 = 0\\ \Leftrightarrow \frac{{{{\tan }^2}x + 2 - 3\tan x}}{{\tan x}} = 0\\ \Rightarrow {\tan ^2}x - 3\tan x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = 2\end{array} \right.\end{array}\)
+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\).
\(\begin{array}{l}{180^0} \le x \le {360^0}\\ \Rightarrow {180^0} \le {45^0} + k{180^0} \le {360^0}\\ \Leftrightarrow {135^0} \le k{180^0} \le {315^0}\\ \Leftrightarrow \frac{3}{4} \le k \le \frac{7}{4} \Rightarrow k = 1\end{array}\)
Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)
+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\).
Ta có thể chọn \(\alpha \approx {63^0}26'\)
\(\begin{array}{l}{180^0} \le x \le {360^0}\\ \Rightarrow {180^0} \le {63^0}26' + k{180^0} \le {360^0}\\ \Leftrightarrow {116^0}34' \le k{180^0} \le {296^0}34'\\ \Leftrightarrow 0,64 < k < 1,65 \Rightarrow k = 1\end{array}\)
Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :
\(x = \alpha + {180^0} \approx {243^0}26'\)
Kết luận :
Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}26'\).
Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số lượng giác, phương trình lượng giác, hoặc các bài toán liên quan đến ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản và áp dụng các phương pháp giải phù hợp.
(Giả sử đề bài là: Giải phương trình: 2sin2x - 3sinx + 1 = 0)
Để giải phương trình lượng giác này, chúng ta sẽ sử dụng phương pháp đặt ẩn phụ. Đặt t = sinx, với điều kiện -1 ≤ t ≤ 1. Khi đó, phương trình trở thành:
2t2 - 3t + 1 = 0
Đây là một phương trình bậc hai, ta có thể giải bằng công thức nghiệm hoặc phân tích thành nhân tử:
(2t - 1)(t - 1) = 0
Từ đó, ta có hai nghiệm:
Thay trở lại t = sinx, ta được:
Giải từng phương trình lượng giác:
Vậy, nghiệm của phương trình là: x = π/6 + k2π, x = 5π/6 + k2π, x = π/2 + k2π, k ∈ Z
Khi giải các bài tập lượng giác, cần lưu ý những điều sau:
Để củng cố kiến thức và kỹ năng giải bài tập lượng giác, bạn có thể luyện tập thêm với các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn đã hiểu rõ cách giải Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao. Hãy luyện tập thường xuyên để nâng cao kỹ năng giải toán của mình. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ!
| Chủ đề | Nội dung |
|---|---|
| Phương pháp giải | Đặt ẩn phụ, sử dụng công thức nghiệm phương trình bậc hai |
| Điều kiện nghiệm | -1 ≤ sinx ≤ 1 |
| Nghiệm tổng quát | x = π/6 + k2π, x = 5π/6 + k2π, x = π/2 + k2π, k ∈ Z |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập