Bài tập Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.
Cho phương trình
Chứng minh rằng \(x = {\pi \over 2} + k\pi \) nghiệm đúng phương trình.
Lời giải chi tiết:
Ta có: \(\sin \left( {\frac{\pi }{2} + k\pi } \right) = {\left( { - 1} \right)^k}\)
(nghĩa là bằng 1 nếu k chẵn, bằng -1 nếu k lẻ)
Thay \(x = {\pi \over 2} + k\pi \) vào phương trình ta được :
\(\begin{array}{l}\frac{{{{\sin }^3}\left( {\frac{\pi }{2} + k\pi } \right) + {{\cos }^3}\left( {\frac{\pi }{2} + k\pi } \right)}}{{2\cos \left( {\frac{\pi }{2} + k\pi } \right) - \sin \left( {\frac{\pi }{2} + k\pi } \right)}} = \cos \left[ {2\left( {\frac{\pi }{2} + k\pi } \right)} \right]\\ \Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}} + 0}}{{2.0 - {{\left( { - 1} \right)}^k}}} = \cos \left( {\pi + k2\pi } \right)\\ \Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}}}}{{ - {{\left( { - 1} \right)}^k}}} = \cos \pi \\ \Leftrightarrow - {\left( { - 1} \right)^{2k}} = - 1\\ \Leftrightarrow - 1 = - 1\end{array}\)
Vậy \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình
Giải phương trình bằng cách đặt \(\tan x = t\) (khi \(x \ne {\pi \over 2} + k\pi \) )
Lời giải chi tiết:
* \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình.
* Với \(x \ne {\pi \over 2} + k\pi \) chia tử và mẫu của vế trái cho \({\cos ^3}x\) ta được :
\({{{{\tan }^3}x + 1} \over {2\left( {1 + {{\tan }^2}x} \right) - \tan x\left( {1 + {{\tan }^2}x} \right)}} = {{1 - {{\tan }^2}x} \over {1 + {{\tan }^2}x}}\)
Đặt \(t = \tan x\) ta được :
\(\eqalign{& {{{t^3} + 1} \over {\left( {2 - t} \right)\left( {1 + {t^2}} \right)}} = {{1 - {t^2}} \over {1 + {t^2}}} \cr & \Leftrightarrow {t^3} + 1 = \left( {{t^2} - 1} \right)\left( {t - 2} \right) \cr & \Leftrightarrow {t^3} + 1 = {t^3} - 2{t^2} - t + 2 \cr & \Leftrightarrow 2{t^2} + t - 1 = 0 \Leftrightarrow \left[ {\matrix{{t = - 1} \cr {t = {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = {1 \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right. \cr & \text{ với }\,\tan \alpha = {1 \over 2} \cr} \)
Vậy phương trình đã cho có nghiệm :\(x = {\pi \over 2} + k\pi ,x = - {\pi \over 4} + k\pi ,\) \(x = \alpha + k\pi \,\left( {k \in\mathbb Z} \right)\)
Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đồ thị hàm số, hoặc các bài toán liên quan đến phương trình, bất phương trình. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững kiến thức cơ bản về các khái niệm và định lý liên quan.
Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn tránh sai sót và tập trung vào việc tìm ra lời giải chính xác.
Giả sử câu 50 yêu cầu tìm tập xác định của hàm số:
f(x) = √(x² - 4)
Khi giải bài tập, cần chú ý các điểm sau:
Tusach.vn là một website cung cấp tài liệu học tập Toán học uy tín, với đầy đủ các bài giải, đáp án, và lời giải chi tiết cho các bài tập trong SGK và SBT. Chúng tôi luôn cập nhật nội dung mới nhất và đảm bảo tính chính xác của thông tin.
| Công Thức | Mô Tả |
|---|---|
| a² - b² = (a - b)(a + b) | Hiệu hai bình phương |
| (a + b)² = a² + 2ab + b² | Bình phương của một tổng |
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao và có thể tự tin giải các bài tập tương tự. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập