Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kiến thức về hàm số và đồ thị hàm số.
Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản như tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.
Tìm tập xác định của mỗi hàm số sau :
\(y = \sqrt {3 - \sin x} \) ;
Phương pháp giải:
Biểu thức \(\sqrt P \) có nghĩa khi \(P\ge 0\).
Sử dụng đánh giá \(-1 ≤ \sin x ≤ 1\).
Lời giải chi tiết:
Vì \(-1 ≤ \sin x ≤ 1\) nên:
\(\begin{array}{l} \Rightarrow 1 \ge - \sin x \ge - 1\\ \Rightarrow 1 + 3 \ge - \sin x + 3 \ge - 1 + 3\\ \Rightarrow 4 \ge 3 - \sin x \ge 2 > 0\\ \Rightarrow 3 - \sin x > 0,\forall x \in R\end{array}\)
Vậy tập xác định của hàm số là: \(D =\mathbb R\)
\(y = {{1 - \cos x} \over {\sin x}}\)
Phương pháp giải:
Biểu thức \(\frac{P}{Q}\) có nghĩa khi \(Q\ne 0\)
Lời giải chi tiết:
\(y = {{1 - \cos x} \over {\sin x}}\) xác định khi và chỉ khi \(\sin x ≠ 0\)\(⇔ x ≠ kπ, k \in\mathbb Z\)
Vậy tập xác định \(D =\mathbb R \backslash \left\{ kπ , k \in \mathbb Z\right\}\)
\(y = \sqrt {{{1 - \sin x} \over {1 + \cos x}}} \)
Phương pháp giải:
Biểu thức \(\sqrt {\frac{P}{Q}} \) xác định khi
\(\left\{ \begin{array}{l}\frac{P}{Q} \ge 0\\Q \ne 0\end{array} \right.\)
Lời giải chi tiết:
ĐK: \(\left\{ \begin{array}{l}\frac{{1 - \sin x}}{{1 + \cos x}} \ge 0\\1 + \cos x \ne 0\end{array} \right.\left( * \right)\)
Ta có:
\( - 1 \le \sin x \le 1 \Rightarrow 1 - \sin x \ge 0\) với mọi \(x\).
\( - 1 \le \cos x \le 1 \Rightarrow 1 + \cos x \ge 0\) với mọi \(x\).
\( \Rightarrow \frac{{1 + \sin x}}{{1 + \cos x}} \ge 0\) với mọi \(x\).
Do đó \(\left( * \right) \Leftrightarrow 1 + \cos x \ne 0\)
\( \Leftrightarrow \cos x \ne - 1 \Leftrightarrow x \ne \pi + k2\pi \)
Vậy tập xác định \(D =\mathbb R\backslash\left\{ π + k2π , k \in\mathbb Z\right\}\)
\(y = \tan \left( {2x + {\pi \over 3}} \right)\)
Phương pháp giải:
Hàm số \(y = \tan u\) xác định khi và chỉ khi \(u \ne \frac{\pi }{2} + k\pi \)
Lời giải chi tiết:
\(y = \tan \left( {2x + {\pi \over 3}} \right)\) xác định
⇔ \(\cos \left( {2x + {\pi \over 3}} \right) \ne 0\)
\( \Leftrightarrow 2x + {\pi \over 3} \ne {\pi \over 2} + k\pi\)
\( \Leftrightarrow 2x \ne \frac{\pi }{6} + k\pi \)
\(\Leftrightarrow x\ne {\pi \over {12}} + k{\pi \over 2},k \in \mathbb Z\)
Vậy tập xác định \(D =\mathbb R\backslash \left\{ {{\pi \over {12}} + k{\pi \over 2},k \in\mathbb Z} \right\}\)
Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh việc xét tính đơn điệu của hàm số. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức sau:
Giả sử câu 1 yêu cầu xét tính đơn điệu của hàm số f(x) = x3 - 3x2 + 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | ↗ | ↘ | ↗ |
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học tập hiệu quả và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập