Câu 41 trang 216 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Áp dụng công thức (2), tìm giá trị gần đúng
\({1 \over {0,9995}}\)
Phương pháp giải:
Công thức (2): \(f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x\)
Lời giải chi tiết:
Xét hàm số \(f\left( x \right) = {1 \over x},\,\text{ ta có }\,f'\left( x \right) = {{ - 1} \over {{x^2}}}\)
Đặt \({x_0} = 1,\Delta x = - 0,0005\) và áp dụng công thức gần đúng
\(f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x\)
Ta được : \({1 \over {{x_0} + \Delta x}} \approx {1 \over {{x_0}}} - {1 \over {x_0^2}}.\Delta x,\)
\( \Rightarrow \frac{1}{{1 + \left( { - 0,0005} \right)}} \approx \frac{1}{1} - \frac{1}{{{1^2}}}.\left( { - 0,0005} \right)\)
Hay : \({1 \over {0,9995}} \approx 1 + 0,0005 = 1,0005\)
\(\sqrt {0,996} \)
Lời giải chi tiết:
Xét
\(\eqalign{ & f\left( x \right) = \sqrt x \,\text{ ta có }\,f'\left( x \right) = {1 \over {2\sqrt x }} \cr & {x_0} = 1,\Delta x = - 0,004 \cr & f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x \cr & \Rightarrow \sqrt {{x_0} + \Delta x} \approx \sqrt {{x_0}} + \frac{1}{{2\sqrt {{x_0}} }}\Delta x \cr &\Leftrightarrow \sqrt {1 + \left( { - 0,004} \right)} \approx \sqrt 1 + \frac{1}{{2\sqrt 1 }}.\left( { - 0,004} \right)\cr & \Leftrightarrow \sqrt {0,996} \approx 1 - {1 \over 2}.0,004 = 0,998 \cr} \)
\(\cos 45^\circ 30'\)
Lời giải chi tiết:
Xét hàm số \(f(x) = \cos x\), ta có: \(f'\left( x \right) = - \sin x.\)
Đặt \({x_0} = {\pi \over 4},\Delta x = {\pi \over {360}}\)
(Vì \({\pi \over {360}} = 30'\) ) và áp dụng công thức gần đúng trên, ta được :
\(\eqalign{ & \cos \left( {{\pi \over 4} + {\pi \over {360}}} \right) \approx \cos {\pi \over 4} - \sin \left( {{\pi \over 4}} \right).{\pi \over {360}} \cr & \text{Vậy }\,\cos 45^\circ 30' \approx {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2}.{\pi \over {360}} \approx 0,7009 \cr} \)
Câu 41 trang 216 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa đạo hàm. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét tính đơn điệu của hàm số.
Giả sử câu 41 yêu cầu: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
tusach.vn là địa chỉ tin cậy cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập