1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao

Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao

Giải Câu 63 Trang 94 SGK Đại số và Giải tích 11 Nâng cao

Chào mừng các em học sinh đến với lời giải chi tiết Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao. Bài tập này thuộc chương trình học môn Toán lớp 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến...

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và lời giải dễ hiểu nhất.

Chọn ngẫu nhiên 5 quân bài trong cỗ bài tú lơ khơ gồm 52 quân bài. Tính xác suất để trong 5 quân bài này có ít nhất một quân át (tính chính xác đến hàng phần nghìn).

Đề bài

Chọn ngẫu nhiên 5 quân bài trong cỗ bài tú lơ khơ gồm 52 quân bài. Tính xác suất để trong 5 quân bài này có ít nhất một quân át (tính chính xác đến hàng phần nghìn).

Lời giải chi tiết

Số kết quả có thể là \(C_{52}^5\).

Gọi A là biến cố “Trong năm quân bài có ít nhất một quân át”.

Biến cố đối của A là \(\overline A \) : “Trong năm quân bài không có quân át”.

Ta tính \(P\left( {\overline A } \right)\)

Số cách chọn ra 5 quân bài không có quân át nào chính là số cách chọn 5 quân bài trong 48 quân bài sau khi đã loại bỏ quân át hay bằng \(C_{48}^5\).

Do đó \(P\left( {\overline A } \right) = \frac{{C_{48}^5}}{{C_{52}^5}}\)

Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) \)\(= 1 - {{C_{48}^5} \over {C_{52}^5}} \approx 0,341\)

Giải Chi Tiết Câu 63 Trang 94 SGK Đại Số và Giải Tích 11 Nâng Cao

Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về hàm số, đạo hàm và các ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.

Đề Bài Câu 63 Trang 94 SGK Đại Số và Giải Tích 11 Nâng Cao

(Giả sử đề bài là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)

Phương Pháp Giải

Để tìm các điểm cực trị của hàm số, ta thực hiện các bước sau:

  1. Tính đạo hàm bậc nhất f'(x).
  2. Giải phương trình f'(x) = 0 để tìm các điểm nghiệm (x1, x2, ...).
  3. Xét dấu của đạo hàm bậc nhất f'(x) trên các khoảng xác định để xác định các điểm cực trị (cực đại, cực tiểu).
  4. Tính giá trị của hàm số tại các điểm cực trị để tìm tọa độ các điểm cực trị.

Lời Giải Chi Tiết

Bước 1: Tính đạo hàm bậc nhất

f'(x) = 3x2 - 6x

Bước 2: Giải phương trình f'(x) = 0

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2

Bước 3: Xét dấu của đạo hàm bậc nhất

Ta xét các khoảng:

  • Khoảng (-∞; 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0, hàm số đồng biến.
  • Khoảng (0; 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0, hàm số nghịch biến.
  • Khoảng (2; +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0, hàm số đồng biến.

Bước 4: Xác định các điểm cực trị

Tại x = 0, f'(x) đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là f(0) = 03 - 3(0)2 + 2 = 2. Vậy điểm cực đại là (0; 2).

Tại x = 2, f'(x) đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2. Vậy điểm cực tiểu là (2; -2).

Kết Luận

Hàm số y = f(x) = x3 - 3x2 + 2 đạt cực đại tại điểm (0; 2) và đạt cực tiểu tại điểm (2; -2).

Lưu Ý Khi Giải Bài Tập

  • Luôn kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đúng các công thức đạo hàm.
  • Phân tích kỹ dấu của đạo hàm để xác định đúng các điểm cực trị.

Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao. Chúc các em học tập tốt!

Tusach.vn - Nơi đồng hành cùng các em trên con đường chinh phục tri thức.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN