Tusach.vn xin giới thiệu lời giải chi tiết các câu 52, 53, 54, 55, 56, 57 trang 125 sách Đại số và Giải tích 11 Nâng cao. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập chất lượng nhất, hỗ trợ học sinh học tập hiệu quả.
Mỗi khẳng định sau đây đúng hay sai :
Mỗi khẳng định sau đây đúng hay sai :
a. Tồn tại một cấp số nhân (un) có u5 < 0 và u75 > 0
b. Nếu các số thực a, b, c theo thứ tự đó lập thành một cấp số cộng có công sai khác 0 thì các số \({a^2},{b^2},{c^2}\) theo thứ tự đó cũng lập thành một cấp số cộng.
c. Nếu các số thực a, b, c theo thứ tự đó lập thành một cấp số nhân thì các số \({a^2},{b^2},{c^2}\) theo thứ tự đó cũng lập thành một cấp số nhân.
Lời giải chi tiết:
a. Sai vì \({{{u_{75}}} \over {{u_5}}} = {q^{70}} > 0\)
b. Sai chẳng hạn 1, 2, 3 là cấp số cộng nhưng 1, 4, 9 không là cấp số cộng.
c. Đúng vì nếu a, b, c, là cấp số nhân công bội q thì các số \({a^2},{b^2},{c^2}\) là cấp số nhân công bội q2.
Cho dãy số (un) xác định bởi : \({u_1} = {1 \over 2}\text{ và }u_n={u_{n - 1}} + 2n\) với mọi n ≥ 2.
Khi đó u50 bằng :
A. 1274,5
B. 2548,5
C. 5096,5
D. 2550,5
Lời giải chi tiết:
Ta có:
\(\eqalign{& {u_n} - {u_{n - 1}} = 2n \cr & \Rightarrow {u_{50}} = \left( {{u_{50}} - {u_{49}}} \right) + \left( {{u_{49}} - {u_{48}}} \right) + ... + \left( {{u_2} - {u_1}} \right) + {u_1} \cr & = 2\left( {50 + 49 + ... + 2} \right) + {1 \over 2} \cr & = 2.{{49.52} \over 2} + 0,5= 2548,5 \cr} \)
Chọn B
Cho dãy số (un) xác định bởi \({u_1} = - 1\text{ và }{u_n} = 2n.{u_{n - 1}}\) với mọi n ≥ 2.
Khi đó u11 bằng :
A. 210.11!
B. -210.11!
C. 210.1110
D. -210.1110
Lời giải chi tiết:
Ta có:
\(\eqalign{& {{{u_n}} \over {{u_{n - 1}}}} = 2n \cr & \Rightarrow {u_{11}} = {{{u_{11}}} \over {{u_{10}}}}.{{{u_{10}}} \over {{u_9}}}...{{{u_2}} \over {{u_1}}}.{u_1} \cr & = \left( {2.11} \right)\left( {2.10} \right)...\left( {2.2} \right).\left( { - 1} \right) \cr & = - {2^{10}}.11! \cr} \)
Chọn B
Cho dãy số (un) xác định bởi : \({u_1} = 150\,\text{ và }\,{u_n} = {u_{n - 1}} - 3\) với mọi n ≥ 2.
Khi đó tổng 100 số hạng đầu tiên của dãy số đó bằng
A. 150
B. 300
C. 29850
D. 59700
Lời giải chi tiết:
Ta có:
\({u_n}-{\rm{ }}{u_{n - 1}} = {\rm{ }} - 3\)
⇒ (un) là cấp số cộng công sai \(d = -3\)
\(\eqalign{& {S_{100}} = {{100\left( {2{u_1} + 99d} \right)} \over 2} \cr & = 50\left( {300 - 297} \right) = 150 \cr} \)
Chọn A
Cho cấp số cộng (un) có : u2 = 2001 và u5 = 1995.
Khi đó u1001 bằng
A. 4005
B. 4003
C. 3
D. 1
Lời giải chi tiết:
Ta có:
\(\eqalign{& \left\{ {\matrix{{{u_1} + 4d = 1995} \cr {{u_1} + d = 2001} \cr} } \right. \Rightarrow \left\{ {\matrix{{d = - 2} \cr {{u_1} = 2003} \cr} } \right. \cr & \Rightarrow {u_{1001}} = {u_1} + 1000d = 2003 - 2000 = 3 \cr} \)
Chọn C
Cho cấp số nhân (un) có u2 = -2 và u5 = 54.
Khi đó tổng 1000 số hạng đầu tiên của cấp số nhân đó bằng
A. \({{1 - {3^{1000}}} \over 4}\)
B. \({{{3^{1000}} - 1} \over 2}\)
C. \({{{3^{1000}} - 1} \over 6}\)
D. \({{1 - {3^{1000}}} \over 6}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& {u_5} = {u_1}{q^4},{u_2} = {u_1}q \cr & \Rightarrow {q^3} = {{54} \over { - 2}} = - 27 \Rightarrow q = - 3,{u_1} = {2 \over 3} \cr & \Rightarrow {S_{1000}} = {u_1}.{{1 - {q^{1000}}} \over {1 - q}} = {2 \over 3}.{{1 - {3^{1000}}} \over 4} = {{1 - {3^{1000}}} \over 6} \cr} \)
Chọn D
Chào mừng các em học sinh đến với lời giải chi tiết các bài tập thuộc trang 125 sách Đại số và Giải tích 11 Nâng cao. Trang này tập trung vào các bài tập liên quan đến một số chủ đề quan trọng trong chương trình học, đòi hỏi các em phải nắm vững kiến thức lý thuyết và kỹ năng vận dụng linh hoạt để giải quyết.
Các câu 52, 53, 54, 55, 56, 57 trang 125 thường xoay quanh các chủ đề như:
(Nội dung câu 52 và lời giải chi tiết)
Lưu ý: Trong quá trình giải, cần chú ý đến điều kiện xác định của hàm số và sử dụng các công thức lượng giác một cách chính xác.
(Nội dung câu 53 và lời giải chi tiết)
(Nội dung câu 54 và lời giải chi tiết)
(Nội dung câu 55 và lời giải chi tiết)
(Nội dung câu 56 và lời giải chi tiết)
(Nội dung câu 57 và lời giải chi tiết)
| Công Thức | Mô Tả |
|---|---|
| sin2x + cos2x = 1 | Công thức lượng giác cơ bản |
| tan x = sin x / cos x | Hệ thức giữa tan, sin và cos |
| cot x = cos x / sin x | Hệ thức giữa cot, sin và cos |
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải các bài tập Đại số và Giải tích 11 Nâng cao. Chúc các em học tập tốt!
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập