Chào mừng bạn đến với tusach.vn! Chúng tôi cung cấp lời giải chi tiết và chính xác cho Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập, nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, dễ hiểu và hữu ích nhất cho học sinh.
Viết phương trình tiếp tuyến của đồ thị hàm số
\(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0
Phương pháp giải:
Phương trình tiếp tuyến tại điểm \(M(x_0;y_0)\) là:
\(y-y_0=f'(x_0)(x-x_0)\)
Lời giải chi tiết:
\(\eqalign{ & f\left( x \right) = {{x - 1} \over {x + 1}} \cr & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) = - 1 \cr & f'\left( x \right) \cr & = \frac{{\left( {x - 1} \right)'\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \cr &= \frac{{x + 1 - x + 1}}{{{{\left( {x + 1} \right)}^2}}}\cr & = {2 \over {{{\left( {x + 1} \right)}^2}}} \cr &\Rightarrow f'\left( 0 \right) = 2 \cr} \)
Phương trình tiếp tuyến cần tìm là :
\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)
\(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.
Lời giải chi tiết:
\(\eqalign{ & f\left( x \right) = \sqrt {x + 2} \cr &f\left( {{x_0}} \right) = 2 \Leftrightarrow \sqrt {{x_0} + 2} = 2 \cr &\Leftrightarrow {x_0} = 2 \cr & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \)
Phương trình tiếp tuyến cần tìm là :
\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)
Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học, thường liên quan đến các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác tùy thuộc vào nội dung cụ thể của bài. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững lý thuyết, hiểu rõ các công thức và phương pháp giải liên quan.
Giả sử câu 24 yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.
Quy tắc tính đạo hàm của một đa thức dựa trên nguyên tắc tính đạo hàm của từng thành phần và cộng lại. Việc hiểu rõ quy tắc này là rất quan trọng để giải quyết các bài tập liên quan đến đạo hàm.
Các bài tập tương tự có thể yêu cầu tính đạo hàm của các hàm số phức tạp hơn, hoặc yêu cầu tìm đạo hàm cấp hai, đạo hàm của hàm hợp, hoặc áp dụng đạo hàm để giải các bài toán tối ưu hóa.
| Hàm số f(x) | Đạo hàm f'(x) |
|---|---|
| xn | nxn-1 |
| sin(x) | cos(x) |
| cos(x) | -sin(x) |
| ex | ex |
Để học tốt môn Đại số và Giải tích, bạn nên dành thời gian ôn tập lý thuyết, làm nhiều bài tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. tusach.vn luôn sẵn sàng hỗ trợ bạn trong quá trình học tập.
Hãy truy cập tusach.vn để xem thêm nhiều bài giải và tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập