Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, tập xác định và tập giá trị để giải quyết.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.
Cho các hàm số f(x) = sinx, g(x) = cosx, h(x) = tanx và các khoảng
Đề bài
Cho các hàm số \(f(x) = \sin x,\) \( g(x) = \cos x,\) \( h(x) = \tan x\) và các khoảng
\({J_1} = \left( {\pi ;{{3\pi } \over 2}} \right);{J_2} = \left( { - {\pi \over 4};{\pi \over 4}} \right);\) \({J_3} = \left( {{{31\pi } \over 4};{{33\pi } \over 4}} \right);{J_4} = \left( { - {{452\pi } \over 3};{{601\pi } \over 4}} \right)\)
Hỏi hàm số nào trong ba hàm số trên đồng biến trên khoảng \(J_1\) ? Trên khoảng \(J_2\) ? Trên khoảng \(J_3\) ? Trên khoảng \(J_4\) ? (Trả lời bằng cách lập bảng).
Phương pháp giải - Xem chi tiết
Sử dụng lí thuyết:
Hàm số \(y = \sin x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\)
Hàm số \(y = \cos x\) đồng biến trên \(\left( { - \pi + k2\pi ;k2\pi } \right)\) và nghịch biến trên \(\left( {k2\pi ;\pi + k2\pi } \right)\)
Hàm số \(y = \tan x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).
Lời giải chi tiết
Ta có:
+) \({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) nên hàm số \(y = \sin x\) nghịch biến trên \({J_1}\), hàm số \(y = \tan x\) đồng biến trên \({J_1}\).
\({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\pi ;2\pi } \right)\) nên hàm số \(y = \cos x\) đồng biến trên \({J_1}\)
+) \({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right) \subset \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_2}\), hàm số \(y = \tan x\) đồng biến trên \({J_2}\).
\({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\)\( = \left( { - \frac{\pi }{4};0} \right) \cup \left[ {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) chỉ đồng biến trên \(\left( {\frac{\pi }{4};0} \right)\) và nghịch biến trên \(\left( {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) không đồng biến trên \({J_2}\)
+) \({J_3} = \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} \right)\) \( = \left( {8\pi - \frac{\pi }{4};8\pi + \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_3}\), hàm số \(y = \tan x\) đồng biến trên \({J_3}\), hàm số \(y = \cos x\) không đồng biến trên \({J_3}\)
+) \({J_4} = \left( { - \frac{{452\pi }}{3};\frac{{601\pi }}{4}} \right)\) \( = \left( { - 150\pi - \frac{{2\pi }}{3}; - 150\pi - \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\), \(y = \tan x\) không đồng biến trên \({J_4}\), hàm số \(y = \cos x\) đồng biến trên \({J_4}\)
Ta có bảng sau, trong đó dấu “ +” có nghĩa “đồng biến”, dấu “0” có nghĩa “không đồng biến” :
Hàm số | J1 | J2 | J3 | J4 |
\(f(x) = \sin x\) | 0 | + | + | 0 |
\(g(x) = \cos x\) | + | 0 | 0 | + |
\(h(x) = \tan x\) | + | + | + | 0 |
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ 1, tập trung vào việc ôn tập và củng cố kiến thức về hàm số. Bài tập này thường yêu cầu học sinh xác định tập xác định, tập giá trị, và các tính chất của hàm số.
Thông thường, câu 4 trang 14 sẽ đưa ra một hàm số cụ thể và yêu cầu:
Để giải quyết bài tập này, chúng ta cần nắm vững các khái niệm cơ bản về hàm số:
Ví dụ minh họa:
Giả sử hàm số f(x) = √(x - 2). Để xác định tập xác định, ta cần điều kiện x - 2 ≥ 0, suy ra x ≥ 2. Vậy tập xác định của hàm số là [2, +∞).
Để tìm tập giá trị, ta thấy rằng √(x - 2) ≥ 0 với mọi x ≥ 2. Vậy tập giá trị của hàm số là [0, +∞).
Để kiểm tra tính chẵn, lẻ, ta tính f(-x) = √(-x - 2). Vì f(-x) ≠ f(x) và f(-x) ≠ -f(x), nên hàm số không chẵn cũng không lẻ.
Ngoài SGK, học sinh có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và sách bài tập. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Kết luận:
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số. Bằng cách nắm vững các khái niệm cơ bản và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập