Câu 47 trang 123 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.
Trong các dãy số dưới đây
Dãy số (un) với un = 8n + 3
Phương pháp giải:
Xét hiệu \(u_{n+1}-u_n\) hoặc thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\).
Nếu hiệu trên là hằng số thì dãy là CSC.
Nếu thương trên là hằng số thì dãy là CSN.
Lời giải chi tiết:
Ta có:
\({u_{n + 1}} - {u_n}\)
\(= 8\left( {n + 1} \right) + 3 - \left( {8n + 3} \right) \)
\( = 8n + 8 + 3 - 8n - 3\)
\(= 8,\forall n \ge 1\)
Suy ra (un) là cấp số cộng với công sai \(d = 8\)
Dãy số (un) với \({u_n} = {n^2} + n + 1\)
Lời giải chi tiết:
Ta có:
\({u_{n + 1}} - {u_n} \)
\(= {\left( {n + 1} \right)^2} + \left( {n + 1} \right) + 1 - ({n^2} + n + 1) \)
\( = {n^2} + 2n + 1 + n + 1 + 1 - {n^2} - n - 1 \)
\(= 2n + 2\)
\(= 2\left( {n + 1} \right)\) không là hằng số
Vậy (un) không là cấp số cộng.
\({{{u_{n + 1}}} \over {{u_n}}} = \frac{{{{\left( {n + 1} \right)}^2} + \left( {n + 1} \right) + 1}}{{{n^2} + n + 1}} \)
\(= \frac{{{n^2} + 2n + 1 + n + 1 + 1}}{{{n^2} + n + 1}}\)
\( = {{{n^2} + 3n + 3} \over {{n^2} + n + 1}}\) không là hằng số nên (un) không là cấp số nhân.
Cách giải thích khác:
Ta có:
\(\begin{array}{l}{u_1} = {1^2} + 1 + 1 = 3\\{u_2} = {2^2} + 2 + 1 = 7\\{u_3} = {3^2} + 3 + 1 = 13\\ \Rightarrow {u_2} - {u_1} = 4 \ne 6 = {u_3} - {u_2}\end{array}\)
Do đó dãy không là CSC.
Lại có: \(\frac{{{u_2}}}{{{u_1}}} = \frac{7}{3} \ne \frac{{13}}{7} = \frac{{{u_3}}}{{{u_2}}}\)
Do đó dãy không là CSN.
Dãy số (un) với \({u_n} = {3.8^n}\)
Lời giải chi tiết:
\({{{u_{n + 1}}} \over {{u_n}}} = {{{{3.8}^{n + 1}}} \over {{{3.8}^n}}} = 8,\forall n \ge 1.\)
Do đó (un) là cấp số nhân với công bội \(q = 8\).
Dãy số (un) với \({u_n} = \left( {n + 2} \right){.3^n}\)
Lời giải chi tiết:
\({u_{n + 1}} - {u_n}\)
\(= \left( {n + 3} \right){.3^{n + 1}} - \left( {n + 2} \right){3^n} \)
\(= {3^n}\left( {3n + 9 - n - 2} \right) = \left( {2n + 7} \right){3^n}\) không là hằng số nên (un) không là cấp số cộng.
\({{{u_{n + 1}}} \over {{u_n}}} = {{\left( {n + 3} \right){{.3}^{n + 1}}} \over {\left( {n + 2} \right){{.3}^n}}} = {{3n + 9} \over {n + 2}}\) không là hằng số nên (un) không là cấp số nhân.
Cách khác:
\(\begin{array}{l}{u_1} = \left( {1 + 2} \right){.3^1} = 9\\{u_2} = \left( {2 + 2} \right){.3^2} = 36\\{u_3} = \left( {3 + 2} \right){.3^3} = 135\\ \Rightarrow {u_2} - {u_1} = 27 \ne 99 = {u_3} - {u_2}\end{array}\)
Do đó dãy không là CSC.
Lại có: \(\frac{{{u_2}}}{{{u_1}}} = \frac{{36}}{9} = 4 \ne \frac{{135}}{{36}} = \frac{{{u_3}}}{{{u_2}}}\)
Do đó dãy không là CSN.
Câu 47 trang 123 SGK Đại số và Giải tích 11 Nâng cao thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa đạo hàm. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Phân tích các dữ kiện đã cho và tìm ra mối liên hệ giữa chúng. Lập kế hoạch giải bài toán một cách logic và khoa học.
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.)
Khi giải bài tập về hàm số, đạo hàm, học sinh cần chú ý những điều sau:
Để củng cố kiến thức và kỹ năng giải bài tập, học sinh có thể tự giải các bài tập tương tự trong SGK và sách bài tập. Ngoài ra, có thể tham khảo các bài giảng trực tuyến và các nguồn tài liệu khác trên internet.
Câu 47 trang 123 SGK Đại số và Giải tích 11 Nâng cao là một bài tập điển hình về ứng dụng của đạo hàm trong việc xét tính đơn điệu và cực trị của hàm số. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp học sinh đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập