Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 9 trang 95 sách bài tập Toán 11 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để tự tin giải quyết các bài toán tương tự.
Cho hình chóp tứ giác \(S.ABCD\) có đáy không là hình thang. Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Trên \(SO\) lấy điểm \(I\) sao cho \(SI = 2IO\).
Đề bài
Cho hình chóp tứ giác \(S.ABCD\) có đáy không là hình thang. Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Trên \(SO\) lấy điểm \(I\) sao cho \(SI = 2IO\).
a) Xác định các giao điểm \(M\), \(N\) lần lượt của \(SA\), \(SD\) với mặt phẳng \(\left( {IBC} \right)\).
b*) Chứng minh rằng các đường thẳng \(AD\), \(BC\) và \(MN\) đồng quy.
Phương pháp giải - Xem chi tiết
a) Để xác định giao điểm của mặt phẳng với một đường thẳng cho trước, ta cần chọn một đường thẳng khác nằm trong mặt phẳng đã cho, rồi tìm giao điểm của 2 đường thẳng đó.
b) Gọi \(K\) là giao điểm của \(AD\) và \(BC\). Ta cần chứng minh \(MN = \left( {IBC} \right) \cap \left( {SAD} \right)\). Từ đó suy ra \(K \in MN\).
Lời giải chi tiết

a)
Giao điểm \(M\) của \(SA\) và \(\left( {IBC} \right)\):
Ta nhận xét rằng \(I \in SO \subset \left( {SAC} \right) \Rightarrow CI \subset \left( {SAC} \right)\).
Trên mặt phẳng \(\left( {SAC} \right)\), gọi \(\left\{ M \right\} = CI \cap SA\).
Do \(IC \subset \left( {IBC} \right)\), nên \(\left\{ M \right\} = \left( {IBC} \right) \cap SA\).
Vậy \(M\) là giao điểm của \(\left( {IBC} \right)\) và \(SA\).
Giao điểm \(N\) của \(SD\) và \(\left( {IBC} \right)\):
Ta nhận xét rằng \(I \in SO \subset \left( {SBD} \right) \Rightarrow BI \subset \left( {SBD} \right)\).
Trên mặt phẳng \(\left( {SBD} \right)\), gọi \(\left\{ N \right\} = BI \cap SD\).
Do \(IB \subset \left( {IBC} \right)\), nên \(\left\{ N \right\} = \left( {IBC} \right) \cap SD\).
Vậy \(N\) là giao điểm của \(\left( {IBC} \right)\) và \(SD\).
b) Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(K\) là giao điểm của \(AD\) và \(BC\).
Ta có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAD} \right)\\M \in \left( {IBC} \right)\end{array} \right. \Rightarrow M \in \left( {SAD} \right) \cap \left( {IBC} \right)\).
Mặt khác, \(\left\{ \begin{array}{l}N \in SD \subset \left( {SAD} \right)\\N \in \left( {IBC} \right)\end{array} \right. \Rightarrow N \in \left( {SAD} \right) \cap \left( {IBC} \right)\).
Vậy giao tuyến của \(\left( {SAD} \right)\) và \(\left( {IBC} \right)\) là đường thẳng \(MN\).
Do \(AD \in \left( {SAD} \right)\), \(BC \in \left( {IBC} \right)\), \(\left\{ K \right\} = AD \cap BC\), ta suy ra \(K\) nằm trên giao tuyến của \(\left( {SAD} \right)\) và \(\left( {IBC} \right)\), tức là \(K \in MN\).
Vậy ba đường thẳng \(AD\), \(BC\), \(MN\) cắt nhau tại \(K\).
Bài 9 trang 95 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và sử dụng đồ thị để giải quyết các bài toán thực tế.
Để giải quyết bài 9 trang 95 SBT Toán 11 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài 9.1: Xác định tập xác định của hàm số y = tan(2x + π/3).
Lời giải:
Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ (k ∈ Z).
Suy ra 2x ≠ π/2 + kπ - π/3 = π/6 + kπ (k ∈ Z).
Vậy x ≠ π/12 + kπ/2 (k ∈ Z).
Tập xác định của hàm số là D = R \ {π/12 + kπ/2 | k ∈ Z}.
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác và nâng cao kết quả học tập của bạn!
| Công thức | Mô tả |
|---|---|
| sin2x + cos2x = 1 | Công thức lượng giác cơ bản |
| tan x = sin x / cos x | Định nghĩa hàm tan |
| cot x = cos x / sin x | Định nghĩa hàm cot |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập