Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 4 trang 65 sách bài tập Toán 11 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán này một cách hiệu quả.
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
Đề bài
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
A. \(y = f\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
B. \(y = f'\left( {{x_0}} \right)\left( {x + {x_0}} \right) + f\left( {{x_0}} \right).\)
C. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
D. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) - f\left( {{x_0}} \right).\)
Phương pháp giải - Xem chi tiết
Dựa vào lý thuyết để làm
Lời giải chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
Đáp án C.
Bài 4 trang 65 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và các công thức liên quan để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải bài tập này.
Bài 4 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 4 trang 65 SBT Toán 11 Cánh Diều:
Cho biểu thức A = sin2x + cos2x + tan2x. Hãy rút gọn biểu thức A.
Lời giải:
Ta có: A = sin2x + cos2x + tan2x = 1 + tan2x = sec2x
Chứng minh rằng: cos2x - sin2x = cos(2x)
Lời giải:
Ta có: cos(2x) = cos2x - sin2x. Vậy đẳng thức được chứng minh.
Giải phương trình: sinx = 1/2
Lời giải:
Phương trình sinx = 1/2 có nghiệm là x = π/6 + k2π và x = 5π/6 + k2π, với k là số nguyên.
Để giải bài tập Toán 11 Cánh Diều hiệu quả, bạn nên:
Tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để giải quyết mọi khó khăn trong quá trình học tập môn Toán 11!
| Công thức | Mô tả |
|---|---|
| sin2x + cos2x = 1 | Đẳng thức lượng giác cơ bản |
| tanx = sinx/cosx | Định nghĩa hàm tan |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập