Tusach.vn xin giới thiệu lời giải chi tiết bài 39 trang 55 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
Đề bài
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_3} = 16\\{u_2} + {u_4} = 40\end{array} \right.\)
b) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_2}.{u_5} = 243\end{array} \right.\)
c) \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 13\\{u_4} + {u_5} + {u_6} = 351\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của cấp số nhân: Với dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \(\frac{{{u_{n + 2}}}}{{{u_{n + 1}}}} = \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) và \({u_n} = {u_1}{q^{n - 1}}\).
Lời giải chi tiết
a) Ta có: \({u_3} = {u_2}q \Rightarrow {u_2} = \frac{{{u_3}}}{q} = \frac{{16}}{q}\), \({u_4} = {u_3}q = 16q\)
Mà \({u_2} + {u_4} = 40\), suy ra \(\frac{{16}}{q} + 16q = 40 \Rightarrow 16 + 16{q^2} = 40q\)
\( \Rightarrow 16{q^2} - 40q + 16 = 0 \Rightarrow 2{q^2} - 5q + 2 = 0 \Rightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)
Trường hợp 1: \(q = \frac{1}{2}\). Ta có \({u_3} = 16 \Rightarrow {u_1}{q^2} = 16 \Rightarrow {u_1}.\frac{1}{4} = 16 \Rightarrow {u_1} = 64\)
Trường hợp 2: \(q = 2\). Tương tự, ta có \({u_1} = 4\).
b) Ta có \({u_2}.{u_5} = {u_1}.q.{u_1}.{q^4} = {u_1}.\left( {{u_1}.{q^5}} \right) = {u_1}.{u_6}\).
Hệ phương trình trở thành \(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_1}.{u_6} = 243\end{array} \right.\)
Theo định lí Viète, \({u_1}\)và \({u_6}\) là nghiệm của phương trình \({X^2} - 244X + 243 = 0\)
Phương trình trên có 2 nghiệm \(X = 1\) và \(X = 243\). Ta có 2 trường hợp:
Trường hợp 1: \({u_1} = 1\) và \({u_6} = 243\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = 243 \Rightarrow q = 3\).
Trường hợp 2: \({u_1} = 243\) và \({u_6} = 1\). Do \({u_6} = {u_1}{q^5}\), ta suy ra \({q^5} = \frac{1}{{243}} \Rightarrow q = \frac{1}{3}\).
c) Ta có
\({u_1} + {u_2} + {u_3} = {u_1} + {u_1}q + {u_1}{q^2} = {u_1}\left( {1 + q + {q^2}} \right)\);
\({u_4} + {u_5} + {u_6} = {u_1}{q^3} + {u_1}{q^4} + {u_1}{q^5} = {u_1}{q^3}\left( {1 + q + {q^2}} \right)\).
Vậy \(\frac{{13}}{{351}} = \frac{{{u_1} + {u_2} + {u_3}}}{{{u_4} + {u_5} + {u_6}}} = \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}{q^3}\left( {1 + q + {q^2}} \right)}} = \frac{1}{{{q^3}}}\)
Suy ra \({q^3} = \frac{{351}}{{13}} = 27 \Rightarrow q = 3\). Từ đó \({u_1} = \frac{{13}}{{1 + q + {q^2}}} = \frac{{13}}{{1 + 3 + {3^2}}} = 1\).
Bài 39 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 39 thường yêu cầu học sinh thực hiện các thao tác như:
Để giải bài 39 trang 55 SBT Toán 11 Cánh Diều, học sinh có thể áp dụng các phương pháp sau:
(Giả sử bài 39 có nội dung cụ thể là: Cho tam giác ABC, tìm tọa độ điểm D sao cho AD = 2AB)
Lời giải:
Gọi D(x; y). Ta có AD = 2AB, suy ra AD = 2AB. Điều này có nghĩa là vectơ AD = 2 vectơ AB.
Giả sử A(xA; yA), B(xB; yB). Khi đó:
Từ vectơ AD = 2 vectơ AB, ta có:
Giải hệ phương trình trên, ta tìm được x và y theo xA, yA, xB, yB. Ví dụ, nếu A(1; 2), B(3; 4) thì:
Vậy D(5; 6).
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Một số bài tập gợi ý:
Bài 39 trang 55 SBT Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Bằng cách nắm vững các khái niệm cơ bản, áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài toán tương tự.
Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp ích cho các bạn trong quá trình học tập. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập