Tusach.vn xin giới thiệu lời giải chi tiết bài 43 trang 56 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = - 1\), \(q = 3\).
Đề bài
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = - 1\), \(q = 3\).
a) Tính tổng 10 số hạng đầu của cấp số nhân đó.
b) Giả sử tổng \(m\) số hạng đầu của \(\left( {{u_n}} \right)\) bằng \( - 364\). Tìm \(m\)
c) Tính tổng \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}}\).
Phương pháp giải - Xem chi tiết
a, b) Sử dụng công thức \({S_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\)
c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta thấy dãy số \(\left( {{v_n}} \right)\) là cấp số nhân với công bội \(\frac{1}{3}\).
Sử dụng công thức \(S'_n = {v_1}\frac{{1 - q{'^n}}}{{1 - q'}}\)
Lời giải chi tiết
a) Do \(q = 3\) nên tổng 10 số hạng đầu của cấp số nhân \(\left( {{u_n}} \right)\) là:
\({S_{10}} = {u_1}\frac{{1 - {q^{10}}}}{{1 - q}} = \left( { - 1} \right)\frac{{1 - {3^{10}}}}{{1 - 3}} = - \frac{{{3^{10}} - 1}}{2}\)
b) Do tổng của \(m\) số hạng đầu là \( - 364\), nên ta có \({S_m} = {u_1}\frac{{1 - {q^m}}}{{1 - q}} = - 364\)
\( \Rightarrow \left( { - 1} \right)\frac{{1 - {3^m}}}{{1 - 3}} = - 364 \Rightarrow \frac{{{3^m} - 1}}{2} = 364 \Rightarrow {3^m} - 1 = 728 \Rightarrow {3^m} = 729 \Rightarrow m = 6\).
Vậy \(m = 6\).
c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta có \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{1}{{{u_{n + 1}}}} :\frac{1}{{{u_n}}} = \frac{1}{{\frac{{{u_{n + 1}}}}{{{u_n}}}}} = \frac{1}{3}\).
Như vậy \(\left( {{v_n}} \right)\) là cấp số nhân với số hạng đầu \({v_1} = \frac{1}{{{u_1}}} = \frac{1}{{ - 1}} = - 1\) và công bội \(q' = \frac{1}{3}\).
Vậy \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}} = {v_1} + {v_2} + {v_3} + {v_4} + {v_5}\)
\( = v{\rm{\_1}}\frac{{1 - {{\left( {q'} \right)}^5}}}{{1 - q'}} = \left( { - 1} \right)\frac{{1 - {{\left( {\frac{1}{3}} \right)}^5}}}{{1 - \left( {\frac{1}{3}} \right)}} = - \frac{{121}}{{81}}\)
Bài 43 trang 56 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải các bài toán liên quan đến hình học sử dụng vectơ.
Để giải quyết bài 43 trang 56 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 43 trang 56 SBT Toán 11 Cánh Diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để giúp học sinh hiểu rõ bản chất của bài toán.
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Đề bài: ...
Lời giải: ...
Đề bài: ...
Lời giải: ...
Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:
Hy vọng với lời giải chi tiết và các mẹo giải bài tập vectơ hiệu quả trên đây, các bạn học sinh sẽ tự tin hơn khi giải bài 43 trang 56 SBT Toán 11 Cánh Diều và các bài tập tương tự. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập