1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 43 trang 56 sách bài tập toán 11 - Cánh diều

Giải bài 43 trang 56 sách bài tập toán 11 - Cánh diều

Giải bài 43 trang 56 SBT Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 43 trang 56 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = - 1\), \(q = 3\).

Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = - 1\), \(q = 3\).

a) Tính tổng 10 số hạng đầu của cấp số nhân đó.

b) Giả sử tổng \(m\) số hạng đầu của \(\left( {{u_n}} \right)\) bằng \( - 364\). Tìm \(m\)

c) Tính tổng \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}}\).

Phương pháp giải - Xem chi tiếtGiải bài 43 trang 56 sách bài tập toán 11 - Cánh diều 1

a, b) Sử dụng công thức \({S_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\)

c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta thấy dãy số \(\left( {{v_n}} \right)\) là cấp số nhân với công bội \(\frac{1}{3}\).

Sử dụng công thức \(S'_n = {v_1}\frac{{1 - q{'^n}}}{{1 - q'}}\)

Lời giải chi tiết

a) Do \(q = 3\) nên tổng 10 số hạng đầu của cấp số nhân \(\left( {{u_n}} \right)\) là:

\({S_{10}} = {u_1}\frac{{1 - {q^{10}}}}{{1 - q}} = \left( { - 1} \right)\frac{{1 - {3^{10}}}}{{1 - 3}} = - \frac{{{3^{10}} - 1}}{2}\)

b) Do tổng của \(m\) số hạng đầu là \( - 364\), nên ta có \({S_m} = {u_1}\frac{{1 - {q^m}}}{{1 - q}} = - 364\)

\( \Rightarrow \left( { - 1} \right)\frac{{1 - {3^m}}}{{1 - 3}} = - 364 \Rightarrow \frac{{{3^m} - 1}}{2} = 364 \Rightarrow {3^m} - 1 = 728 \Rightarrow {3^m} = 729 \Rightarrow m = 6\).

Vậy \(m = 6\).

c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta có \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{1}{{{u_{n + 1}}}} :\frac{1}{{{u_n}}} = \frac{1}{{\frac{{{u_{n + 1}}}}{{{u_n}}}}} = \frac{1}{3}\).

Như vậy \(\left( {{v_n}} \right)\) là cấp số nhân với số hạng đầu \({v_1} = \frac{1}{{{u_1}}} = \frac{1}{{ - 1}} = - 1\) và công bội \(q' = \frac{1}{3}\).

Vậy \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}} = {v_1} + {v_2} + {v_3} + {v_4} + {v_5}\)

\( = v{\rm{\_1}}\frac{{1 - {{\left( {q'} \right)}^5}}}{{1 - q'}} = \left( { - 1} \right)\frac{{1 - {{\left( {\frac{1}{3}} \right)}^5}}}{{1 - \left( {\frac{1}{3}} \right)}} = - \frac{{121}}{{81}}\)

Giải bài 43 trang 56 SBT Toán 11 Cánh Diều: Tổng quan

Bài 43 trang 56 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải các bài toán liên quan đến hình học sử dụng vectơ.

Nội dung chi tiết bài 43 trang 56 SBT Toán 11 Cánh Diều

Để giải quyết bài 43 trang 56 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa vectơ: Hiểu rõ khái niệm vectơ, các yếu tố của vectơ (điểm gốc, điểm cuối, độ dài, hướng).
  • Các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực, tích vô hướng của hai vectơ.
  • Tọa độ của vectơ: Biết cách biểu diễn vectơ bằng tọa độ trong hệ tọa độ Oxy.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, tìm phương trình đường thẳng, đường tròn.

Lời giải chi tiết bài 43 trang 56 SBT Toán 11 Cánh Diều

Dưới đây là lời giải chi tiết cho từng phần của bài 43 trang 56 SBT Toán 11 Cánh Diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để giúp học sinh hiểu rõ bản chất của bài toán.

Ví dụ minh họa (Giả sử bài 43 có 3 phần a, b, c)

Phần a:

Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Áp dụng quy tắc trung điểm: AM = (AB + AC) / 2
  2. Nhân cả hai vế với 2: 2AM = AB + AC
  3. Vậy, AB + AC = 2AM (đpcm)
Phần b:

Đề bài: ...

Lời giải: ...

Phần c:

Đề bài: ...

Lời giải: ...

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và các vectơ liên quan.
  • Sử dụng quy tắc cộng, trừ vectơ: Áp dụng quy tắc cộng, trừ vectơ để đơn giản hóa biểu thức.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đưa bài toán về dạng quen thuộc.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Các trang web học Toán trực tuyến: Tusach.vn, Vietjack, Loigiaihay,...
  • Các video bài giảng trên YouTube.
  • Các diễn đàn, nhóm học tập Toán 11 trên mạng xã hội.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập vectơ hiệu quả trên đây, các bạn học sinh sẽ tự tin hơn khi giải bài 43 trang 56 SBT Toán 11 Cánh Diều và các bài tập tương tự. Chúc các bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN