Tusach.vn xin giới thiệu lời giải chi tiết bài 17 trang 100 sách bài tập Toán 11 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, cập nhật nhanh chóng và đầy đủ nhất để hỗ trợ quá trình học tập của các bạn.
Cho hình chóp tứ giác \(S.ABCD\). Gọi \(G\), \(K\) lần lượt là trọng tâm của các tam giác \(SAB\) và \(SAD\)
Đề bài
Cho hình chóp tứ giác \(S.ABCD\). Gọi \(G\), \(K\) lần lượt là trọng tâm của các tam giác \(SAB\) và \(SAD\); \(M\), \(N\) lần lượt là trung điểm của các cạnh \(BC\) và \(CD\). Chứng minh rằng \(GK\parallel MN\).
Phương pháp giải - Xem chi tiết
Gọi \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\). Chứng minh rằng các đường thẳng \(GK\), \(PQ\), \(BD\), \(MN\) đôi một song song với nhau, từ đó suy ra điều phải chứng minh.
Lời giải chi tiết

Gọi \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\).
Ta có \(G\) là trọng tâm của tam giác \(SAB\), nên suy ra \(G \in SP\) và \(\frac{{SG}}{{SP}} = \frac{2}{3}\).
Chứng minh tương tự ta cũng có \(K \in SQ\) và \(\frac{{SK}}{{SQ}} = \frac{2}{3}\).
Tam giác \(SPQ\) có \(\frac{{SG}}{{SP}} = \frac{{SK}}{{SQ}}\) nên theo định lí Thales ta có \(GK\parallel PQ\).
Xét tam giác \(ABD\), ta có \(P\) là trung điểm của \(AB\), \(Q\) là trung điểm của \(AD\), nên \(PQ\) là đường trung bình của tam giác \(ABD\). Suy ra \(PQ\parallel BD\).
Chứng minh tương tự ta cũng có \(MN\parallel BD\).
Từ đó suy ra \(GK\parallel MN\). Bài toán được chứng minh.
Bài 17 trang 100 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, tích vô hướng, và các tính chất liên quan để giải quyết các bài toán hình học không gian.
Bài 17 thường bao gồm các dạng bài tập sau:
Để giúp các bạn hiểu rõ hơn về cách giải bài 17, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Lưu ý rằng, trước khi bắt đầu giải bài tập, các bạn nên ôn lại lý thuyết và các công thức liên quan.
Câu hỏi: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của hai vectơ này.
Lời giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a.b = xa.xb + ya.yb + za.zb
Trong đó:
Áp dụng công thức vào bài toán, ta có:
a.b = 1.(-2) + 2.1 + 3.0 = -2 + 2 + 0 = 0
Vậy, tích vô hướng của hai vectơ a và b là 0.
Để giải nhanh các bài tập về vectơ, các bạn nên:
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 11. Chúng tôi luôn cập nhật nội dung mới nhất và đa dạng các dạng bài tập để đáp ứng nhu cầu học tập của các bạn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập