Tusach.vn xin giới thiệu đáp án chi tiết bài 61 trang 50 sách bài tập Toán 11 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 11 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Giải mỗi phương trình sau:
Đề bài
Giải mỗi phương trình sau:
a) \({3^{x - 1}} = 5;\)
b) \({3^{{x^2} - 4x + 5}} = 9;\)
c) \({2^{2x + 3}} = 8\sqrt 2 ;\)
d) \({8^{x - 2}} = {4^{1 - 2x}};\)
e) \({2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}};\)
g) \({2^{{x^2} - 4x + 4}} = 3.\)
Phương pháp giải - Xem chi tiết
Đưa 2 vế về cùng cơ số hoặc sử dụng với \(a > 0,{\rm{ }}a \ne 1\) thì \({\log _a}x = b \Leftrightarrow x = {a^b}.\)
Lời giải chi tiết
a) \({3^{x - 1}} = 5 \Leftrightarrow x - 1 = {\log _3}5 \Leftrightarrow x = 1 + {\log _3}5.\)
b) \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {3^{{x^2} - 4x + 5}} = {3^2} \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).
c) \({2^{2x + 3}} = 8\sqrt 2 \Leftrightarrow {2^{2x + 3}} = {2^3}{.2^{\frac{1}{2}}} \Leftrightarrow {2^{2x + 3}} = {2^{\frac{7}{2}}} \Leftrightarrow 2x + 3 = \frac{7}{2} \Leftrightarrow x = \frac{1}{4}.\)
d) \({8^{x - 2}} = {4^{1 - 2x}} \Leftrightarrow {2^{3\left( {x - 2} \right)}} = {2^{2\left( {1 - 2x} \right)}} \Leftrightarrow 3x - 6 = 2 - 4x \Leftrightarrow 7x = 8 \Leftrightarrow x = \frac{8}{7}.\)
e) Ta có:
\(\begin{array}{l}{2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{ - 2}}{.2^{4\left( {x - 3} \right)}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{4x - 14}} \Leftrightarrow {x^2} - 3x - 2 = 4x - 14\\ \Leftrightarrow {x^2} - 7x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 4\end{array} \right..\end{array}\) g) \({2^{{x^2} - 4x + 4}} = 3 \Leftrightarrow {x^2} - 4x + 4 = {\log _2}3 \Leftrightarrow {\left( {x - 2} \right)^2} = {\log _2}3 \Leftrightarrow \left[ \begin{array}{l}x = 2 + {\log _2}3\\x = 2 - {\log _2}3\end{array} \right.\).
Bài 61 trang 50 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số lượng giác và đồ thị hàm số lượng giác để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như chu kỳ, biên độ, pha, và cách xác định các điểm đặc biệt trên đồ thị hàm số.
Bài 61 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh giải quyết bài tập này một cách hiệu quả, Tusach.vn xin cung cấp đáp án chi tiết và phương pháp giải bài 61 trang 50 SBT Toán 11 Cánh Diều:
(Đáp án cụ thể của bài 61 sẽ được trình bày chi tiết tại đây, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Ví dụ:)
Câu a: ...
Câu b: ...
Câu c: ...
Để giải tốt các bài tập về hàm số lượng giác, các em cần nắm vững các kiến thức sau:
Khi giải bài tập này, các em cần lưu ý:
Tusach.vn là website chuyên cung cấp các tài liệu học tập, đáp án bài tập, và phương pháp giải các bài toán Toán, Lý, Hóa, Sinh, Anh, Văn. Chúng tôi luôn cố gắng mang đến cho các em những tài liệu chất lượng, chính xác, và dễ hiểu nhất. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập của bạn!
| Chủ đề | Nội dung |
|---|---|
| Hàm số lượng giác | Định nghĩa, tính chất, đồ thị |
| Phương trình lượng giác | Phương pháp giải, ứng dụng |
| Bài tập 61 SBT Toán 11 Cánh Diều | Đáp án chi tiết, phương pháp giải |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập