Tusach.vn xin giới thiệu lời giải chi tiết bài 49 trang 110 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông cạnh \(a\)
Đề bài
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông cạnh \(a\), \(AC\) cắt \(BD\) tại \(O\), \(SO \bot \left( {ABCD} \right)\), \(SA = 2a\). Tính khoảng cách:
a) Từ điểm \(A\) đến mặt phẳng \(\left( {SBD} \right)\).
b) Giữa hai đường thẳng \(SO\) và \(CD\).
c) Từ điểm \(O\) đến mặt phẳng \(\left( {SCD} \right)\).
d*) Giữa hai đường thẳng \(AB\) và \(SD\).
Phương pháp giải - Xem chi tiết
a) Chỉ ra rằng \(AO \bot \left( {SBD} \right)\), từ đó suy ra rằng khoảng cách cần tìm là đoạn thẳng \(AO\).
b) Gọi \(M\) là hình chiếu của \(O\) trên \(CD\). Chứng minh rằng \(OM\) là đường vuông góc chung của 2 đường thẳng \(SO\) và \(CD\), từ đó khoảng cách cần tìm là đoạn thẳng \(OM\).
c) Gọi \(H\) là hình chiếu của \(O\) trên \(SM\). Chứng minh rằng \(H\) cũng là hình chiếu của \(O\) trên \(\left( {SCD} \right)\), từ đó suy ra khoảng cách cần tìm là đoạn thẳng \(OH\).
d) Gọi \(G\) là hình chiếu của \(A\) trên \(\left( {SCD} \right)\). Chỉ ra rằng \(AB\parallel \left( {SCD} \right)\) và \(SD \subset \left( {SCD} \right)\) nên khoảng cách giữa \(AB\) và \(SD\) cũng chính là khoảng cách giữa \(AB\) và \(\left( {SCD} \right)\), và bằng \(AG\). Sử dụng định lí Thales để tính \(AG\).
Lời giải chi tiết

a) Ta có \(ABCD\) là hình vuông, nên \(AO \bot BD\). Hơn nữa, do \(SO \bot \left( {ABCD} \right)\) nên \(SO \bot AO\). Như vậy, do \(AO \bot BD\), \(SO \bot AO\) nên \(AO \bot \left( {SBD} \right)\). Điều này có nghĩa \(O\) là hình chiếu của \(A\) trên \(\left( {SBD} \right)\). Vậy khoảng cách từ \(A\) đến \(\left( {SBD} \right)\) là đoạn thẳng \(AO\).
Ta có \(ABCD\) là hình vuông cạnh \(a\), nên \(AC = a\sqrt 2 \Rightarrow AO = \frac{{a\sqrt 2 }}{2}\).
Vậy khoảng cách từ \(A\) đến \(\left( {SBD} \right)\) là \(\frac{{a\sqrt 2 }}{2}\).
b) Gọi \(M\) là hình chiếu của \(O\) trên \(CD\). Do \(O\) là tâm của hình vuông \(ABCD\) cạnh \(a\), nên ta suy ra \(OM \bot CD\) và \(OM = \frac{a}{2}\).
Do \(SO \bot \left( {ABCD} \right)\), ta suy ra \(SO \bot OM\).
Như vậy, do \(OM \bot CD\), \(SO \bot OM\), nên \(OM\) là đường vuông góc chung của 2 đường thẳng \(SO\) và \(CD\), điều này có nghĩa khoảng cách giữa 2 đường thẳng \(SO\) và \(CD\) là đoạn thẳng \(OM\).
Do \(OM = \frac{a}{2}\), ta kết luận rằng khoảng cách giữa 2 đường thẳng \(SO\) và \(CD\) là \(\frac{a}{2}\).
c) Gọi \(H\) là hình chiếu của \(O\) trên \(SM\). Vì \(SO \bot \left( {ABCD} \right)\) nên \(SO \bot CD\), mà \(OM \bot CD\) nên \(\left( {SOM} \right) \bot CD\), điều này suy ra \(OH \bot CD\). Mà lại có \(OH \bot SM\) nên \(OH \bot \left( {SCD} \right)\).
Vậy \(H\) là hình chiếu của \(O\) trên \(\left( {SCD} \right)\), tức là khoảng cách từ \(O\) đến \(\left( {SCD} \right)\) là đoạn thẳng \(OH\).
Tam giác \(SAO\) vuông tại \(O\) nên \(S{O^2} = S{A^2} - A{O^2} = {\left( {2a} \right)^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{7{a^2}}}{2}\).
Tam giác \(SOM\) vuông tại \(O\) có đường cao \(OH\), nên ta có:
\(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{2}{{7{a^2}}} + \frac{4}{{{a^2}}} = \frac{{30}}{{7{a^2}}} \Rightarrow OH = \sqrt {\frac{{7{a^2}}}{{30}}} = \frac{{a\sqrt {210} }}{{30}}\).
d) Gọi \(G\) là hình chiếu của \(A\) trên \(\left( {SCD} \right)\).
Ta có \(AB\parallel CD\) nên \(AB\parallel \left( {SCD} \right)\), mà \(SD \subset \left( {SCD} \right)\), nên khoảng cách giữa 2 đường thẳng \(AB\) và \(SD\) cũng bằng khoảng cách giữa \(AB\) và \(\left( {SCD} \right)\), và bằng khoảng cách từ \(A\) đến \(\left( {SCD} \right)\). Do \(G\) là hình chiếu của \(A\) trên \(\left( {SCD} \right)\), nên khoảng cách cần tìm là đoạn thẳng \(AG\).
Do \(OH \bot \left( {SCD} \right)\), \(AG \bot \left( {SCD} \right)\) nên \(OH\parallel AG\).
Tam giác \(ACG\) có \(OH\parallel AG\), nên theo định lí Thales ta có \(\frac{{OH}}{{AG}} = \frac{{CO}}{{CA}} = \frac{1}{2}\).
Suy ra \(AG = 2OH\). Mà \(OH = \frac{{a\sqrt {210} }}{{30}}\) nên \(AG = \frac{{a\sqrt {210} }}{{15}}\).
Bài 49 trang 110 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất về quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng để giải quyết các bài toán thực tế.
Bài tập 49 thường bao gồm các dạng câu hỏi sau:
Để giải bài 49 trang 110 SBT Toán 11 Cánh Diều một cách hiệu quả, bạn cần:
Dưới đây là lời giải chi tiết cho từng phần của bài tập 49 (ví dụ, giả sử bài tập yêu cầu chứng minh một đường thẳng vuông góc với một mặt phẳng):
Để chứng minh d ⊥ (P), ta cần chứng minh d vuông góc với mọi đường thẳng nằm trong (P). Cụ thể:
Để giải nhanh các bài tập về đường thẳng và mặt phẳng, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Tusach.vn cung cấp đầy đủ các bài giải chi tiết và đáp án chính xác cho tất cả các bài tập trong sách bài tập Toán 11 Cánh Diều.
Tusach.vn là website học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập, bài giải chi tiết và đáp án chính xác cho các môn học từ lớp 6 đến lớp 12. Chúng tôi luôn cố gắng tạo ra một môi trường học tập thân thiện, hiệu quả và giúp học sinh đạt được kết quả tốt nhất.
| Chương | Bài | Liên kết |
|---|---|---|
| Chương 3 | Bài 48 | Giải bài 48 trang 110 |
| Chương 3 | Bài 50 | Giải bài 50 trang 112 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập