Tusach.vn xin giới thiệu lời giải chi tiết bài 11 trang 69 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất, hỗ trợ tối đa cho quá trình học tập của các bạn.
Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng (frac{1}{4}) độ cao mà quả bóng đạt được trước đó.
Đề bài
Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi \({h_n}\) là độ cao quả bóng đạt được ở lần nảy thứ \(n\).
a) Tìm số hạng tổng quát của dãy số \(\left( {{h_n}} \right)\).
b) Tính giới hạn của dãy số \(\left( {{h_n}} \right)\) và nêu ý nghĩa giới hạn của dãy số \(\left( {{h_n}} \right)\).
c) Gọi \({S_n}\) là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ \(n\). Tính \({S_n}\), nếu quá trình này cứ tiếp tục diễn ra mãi thì tổng quãng đường quả bóng di chuyển được là bao nhiêu?
Phương pháp giải - Xem chi tiết
a) Theo đề bài, sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được lần trước đó, do vậy \({h_{n + 1}} = \frac{1}{4}{h_n}\). Suy ra số hạng tổng quát của dãy là \({h_n} = \frac{{100}}{{{4^n}}}\).
b) Ta có \(\lim \frac{{100}}{{{4^n}}} = \lim 100.\lim \frac{1}{{{4^n}}} = 100.0 = 0\)
Từ đó ta rút ra ý nghĩa giới hạn của dãy \(\left( {{h_n}} \right)\).
c) Sử dụng công thức tính tổng của cấp số nhân lùi vô hạn.
Lời giải chi tiết
a) Theo đề bài, sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được lần trước đó. Sau lần chạm đất thứ \(n\), độ cao của quả bóng là \({h_n}\), thì lần chạm đất tiếp theo (thứ \(n + 1\)), độ cao của quả bóng là \(\frac{1}{4}{h_n}\).
Tức là \({h_{n + 1}} = \frac{1}{4}{h_n} \Rightarrow \frac{{{h_{n + 1}}}}{{{h_n}}} = \frac{1}{4}\). Như vậy \(\left( {{h_n}} \right)\) là cấp số nhân với \({h_1} = \frac{{100}}{4} = 25\) và công bội \(q = \frac{\({h_n} = \frac{{100}}{{{4^n}}}\)1}{4}\).
Như vậy \({h_n} = {h_1}.{q^{n - 1}} = \frac{{100}}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}} = \frac{{100}}{{{4^n}}}\)
Vậy số hạng tổng quát của dãy là .
b) Ta có \(\lim \frac{{100}}{{{4^n}}} = \lim 100.\lim \frac{1}{{{4^n}}} = 100.0 = 0\)
Từ giới hạn này, ta rút ra được ý nghĩa: Khi \(n\) càng dần tới vô cực thì độ cao của quả bóng đạt được sau khi nảy ngày càng nhỏ và độ cao đó dần tới 0.
c) Từ lúc thả rơi đến lần chạm đất đầu tiên, qua bóng đi được 100 m.
Từ lúc chạm đất lần đầu tiên đến lúc chạm đất lần thứ hai, quả bóng nảy lên độ cao \({h_1}\) rồi rơi xuống đất. Lúc này quả bóng đi được đoạn đường là \(2{h_1}\).
Từ lúc chạm đất lần thứ hai đến lúc chạm đất lần thứ ba, quả bóng nảy lên độ cao \({h_2}\) rồi rơi xuống đất. Lúc này quả bóng đi được đoạn đường là \(2{h_2}\).
Cứ như vậy, quãng đường quả bóng đi được là:
\({S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ... + {h_n}} \right)\)
Nếu quá trình bóng nảy cứ tiếp tục diễn ra mãi thì quãng đường quả bóng đi được là \(\lim {S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ...} \right)\)
Ta thấy \(\left( {{h_n}} \right)\) là cấp số nhân với công bội \(q = \frac{1}{4} < 1\), nên \(\left( {{h_n}} \right)\) là cấp số nhân lùi vô hạn.
Như vậy \(\lim {S_n} = 100 + 2\left( {{h_1} + {h_2} + {h_3} + ...} \right) = 100 + 2\frac{{{h_1}}}{{1 - q}} = 100 + 2\frac{{25}}{{1 - \frac{1}{4}}} = \frac{{500}}{3}\)
Vậy tổng quãng đường quả bóng di chuyển là \(\frac{{500}}{3}\) m.
Bài 11 trang 69 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay, và phép đối xứng để giải quyết các bài toán hình học.
Để giải tốt bài 11 trang 69 SBT Toán 11 Cánh Diều, học sinh cần nắm vững các kiến thức sau:
Đề bài: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến đó.
Giải:
Áp dụng công thức biến đổi tọa độ của phép tịnh tiến, ta có:
x' = x + vx = 1 + 3 = 4
y' = y + vy = 2 + (-1) = 1
Vậy, tọa độ điểm A' là (4; 1).
Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau để nắm vững kiến thức về phép biến hình:
Tusach.vn hy vọng với lời giải chi tiết và những hướng dẫn trên, các bạn học sinh sẽ tự tin hơn khi giải bài 11 trang 69 SBT Toán 11 Cánh Diều và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập