Tusach.vn xin giới thiệu lời giải chi tiết bài 51 trang 57 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?
Đề bài
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?
A. \({u_n} = \frac{1}{{{5^n}}}\)
B. \({u_n} = 1 + \frac{1}{{5n}}\)
C. \({u_n} = \frac{1}{{{5^n} - 1}}\)
D. \({u_n} = \frac{1}{{{n^2}}}\)
Phương pháp giải - Xem chi tiết
Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số.
Lời giải chi tiết
a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{5^{n + 1}}}}:\frac{1}{{{5^n}}} = \frac{{{5^n}}}{{{5^n}.5}} = \frac{1}{5}\).
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho là cấp số nhân với công bội \(q = \frac{1}{5}\).
b) Ta có \({u_n} = 1 + \frac{1}{{5n}} = \frac{{5n + 1}}{{5n}}\)
Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5\left( {n + 1} \right) + 1}}{{5\left( {n + 1} \right)}} :\frac{{5n + 1}}{{5n}} = \frac{{5n + 6}}{{5\left( {n + 1} \right)}}.\frac{{5n}}{{5n + 1}} = \frac{{n\left( {5n + 6} \right)}}{{\left( {n + 1} \right)\left( {5n + 1} \right)}}\).
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.
c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{5^{n + 1}} - 1}} :\frac{1}{{{5^n} - 1}} = \frac{{{5^n} - 1}}{{{5^{n + 1}} - 1}}\)
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.
d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{{\left( {n + 1} \right)}^2}}}:\frac{1}{{{n^2}}} = \frac{{{n^2}}}{{{{\left( {n + 1} \right)}^2}}}\)
Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.
Đáp án đúng là A.
Bài 51 trang 57 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay, và phép đối xứng để giải quyết các bài toán hình học.
Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững:
Nội dung bài toán: (Giả sử bài toán yêu cầu tìm ảnh của một điểm hoặc một hình qua một phép biến hình cụ thể. Ví dụ: Cho điểm A(1;2) và phép tịnh tiến theo vectơ v = (3;-1). Tìm ảnh A' của điểm A qua phép tịnh tiến đó.)
Lời giải:
Ngoài bài 51, sách bài tập Toán 11 Cánh Diều còn nhiều bài tập tương tự về các phép biến hình. Để giải tốt các bài tập này, học sinh nên:
Tusach.vn là một website cung cấp tài liệu học tập Toán 11 uy tín, chất lượng. Chúng tôi cung cấp:
Hãy truy cập tusach.vn để học Toán 11 hiệu quả và đạt kết quả cao!
| Phép biến hình | Công thức |
|---|---|
| Tịnh tiến | A'(x+a; y+b) |
| Quay | (Công thức quay phức tạp hơn, cần tùy thuộc vào tâm quay và góc quay) |
| Đối xứng trục | (Công thức đối xứng trục phức tạp hơn, cần tùy thuộc vào trục đối xứng) |
| Đối xứng tâm | A'(2x0 - x; 2y0 - y) |
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các bạn học sinh sẽ tự tin hơn khi giải bài 51 trang 57 SBT Toán 11 Cánh Diều và các bài tập tương tự. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập