1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 42 trang 23 sách bài tập toán 11 - Cánh diều

Giải bài 42 trang 23 sách bài tập toán 11 - Cánh diều

Giải bài 42 trang 23 SBT Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 42 trang 23 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.

Xét tính chẵn, lẻ của các hàm số sau:

Đề bài

Xét tính chẵn, lẻ của các hàm số sau:

a) \(y = \sin 2x\)

b) \(y = \left| {\sin x} \right|\)

c) \(y = {\tan ^2}x\)

d) \(y = \sqrt {1 - \cos x} \)

e) \(y = \tan x + \cot x\)

f) \(y = \sin x\cos 3x\)

Phương pháp giải - Xem chi tiếtGiải bài 42 trang 23 sách bài tập toán 11 - Cánh diều 1

Các hàm số đã cho đều thoả mãn trên tập xác định \(D\), với \(x \in D\) thì \( - x \in D\).

Với hàm \(f\left( x \right)\), xét \(f\left( { - x} \right)\). Nếu \(f\left( { - x} \right) = f\left( x \right)\) thì \(f\left( x \right)\) là hàm số chẵn; nếu \(f\left( { - x} \right) = - f\left( x \right)\) thì \(f\left( x \right)\) là hàm số lẻ.

Lời giải chi tiết

Các hàm số đã cho đều thoả mãn trên tập xác định \(D\), với \(x \in D\) thì \( - x \in D\).

a) Xét hàm số \(f\left( x \right) = \sin 2x\), ta có:

\(f\left( { - x} \right) = \sin \left[ {2\left( { - x} \right)} \right] = \sin \left( { - 2x} \right) = - \sin 2x = - f\left( x \right)\)

Do đó, hàm số đã cho là hàm số lẻ.

b) Xét hàm số \(f\left( x \right) = \left| {\sin x} \right|\), ta có:

\(f\left( { - x} \right) = \left| {\sin \left( { - x} \right)} \right| = \left| { - \sin x} \right| = \left| {\sin x} \right| = f\left( x \right)\)

Do đó, hàm số đã cho là hàm số chẵn.

c) Xét hàm số \(f\left( x \right) = {\tan ^2}x\) , ta có:

\(f\left( { - x} \right) = {\tan ^2}\left( { - x} \right) = {\left( { - \tan x} \right)^2} = {\tan ^2}x = f\left( x \right)\)

Do đó, hàm số đã cho là hàm số chẵn.

d) Xét hàm số \(f\left( x \right) = \sqrt {1 - \cos x} \) , ta có:

\(f\left( { - x} \right) = \sqrt {1 - \cos \left( { - x} \right)} = \sqrt {1 - \cos x} = f\left( x \right)\)

Do đó, hàm số đã cho là hàm số chẵn.

e) Xét hàm số \(f\left( x \right) = \tan x + \cot x\) , ta có:

\(f\left( { - x} \right) = \tan \left( { - x} \right) + \cot \left( { - x} \right) = - \tan x - \cot x = - f\left( x \right)\)

Do đó, hàm số đã cho là hàm số lẻ.

f) Xét hàm số \(f\left( x \right) = \sin x\cos 3x\) , ta có:

\(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left[ {3\left( { - x} \right)} \right] = - \sin x\cos \left( { - 3x} \right) = - \sin x\cos 3x = - f\left( x \right)\)

Do đó, hàm số đã cho là hàm số lẻ.

Giải bài 42 trang 23 SBT Toán 11 Cánh Diều: Tổng quan

Bài 42 trang 23 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải các bài toán liên quan đến hình học sử dụng vectơ.

Nội dung chi tiết bài 42 trang 23 SBT Toán 11 Cánh Diều

Để giải quyết bài 42 trang 23 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa vectơ: Hiểu rõ khái niệm vectơ, các yếu tố của vectơ (điểm gốc, điểm cuối, độ dài, hướng).
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực vectơ.
  • Tọa độ của vectơ: Cách biểu diễn vectơ bằng tọa độ trong hệ tọa độ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về đường thẳng, đường tròn, tam giác,...

Lời giải chi tiết bài 42 trang 23 SBT Toán 11 Cánh Diều

(Ở đây sẽ là lời giải chi tiết cho từng ý của bài 42. Ví dụ:)

Câu a: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.

Lời giải:

  1. Vì M là trung điểm của BC nên overrightarrow{BM} =overrightarrow{MC}.
  2. Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}.
  3. Thay overrightarrow{BM} =overrightarrow{MC} vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}.
  4. overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC} nên overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}.
  5. Thay overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM} vào phương trình overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}.
  6. Suy ra: 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}.
  7. Vậy: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).

Câu b: ... (Giải tương tự cho các câu còn lại)

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn nên:

  • Vẽ hình minh họa để hình dung rõ bài toán.
  • Sử dụng các quy tắc cộng, trừ, nhân vectơ một cách linh hoạt.
  • Biến đổi các biểu thức vectơ về dạng đơn giản nhất.
  • Kiểm tra lại kết quả sau khi giải xong.

Tusach.vn – Nơi đồng hành cùng bạn học Toán 11

Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho tất cả các bài tập trong sách bài tập Toán 11 Cánh Diều. Hãy truy cập tusach.vn để học Toán 11 hiệu quả và đạt kết quả cao!

Ngoài ra, bạn có thể tham khảo thêm các tài liệu học tập khác tại tusach.vn, bao gồm:

  • Giải bài tập sách giáo khoa Toán 11
  • Các bài giảng video Toán 11
  • Các đề thi thử Toán 11

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN