1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 27 trang 99 sách bài tập toán 11 - Cánh diều

Giải bài 27 trang 99 sách bài tập toán 11 - Cánh diều

Giải bài 27 trang 99 SBT Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 27 trang 99 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất để hỗ trợ học sinh trong quá trình học tập.

Cho hình chóp (S.ABC) có (SA bot left( {ABC} right)), (AB bot BC)

Đề bài

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), \(AB \bot BC\), \(SA = AB = 3a\), \(BC = 4a\). Gọi \(\alpha \), \(\beta \), \(\gamma \) lần lượt là số đo của các góc nhị diện \(\left[ {B,SA,C} \right]\), \(\left[ {A,BC,S} \right]\), \(\left[ {A,SC,B} \right]\). Tính

a) \(\cos \alpha \), \(\cos \beta \).

b*) \(\cos \gamma \).

Phương pháp giải - Xem chi tiếtGiải bài 27 trang 99 sách bài tập toán 11 - Cánh diều 1

a) Xác định góc phẳng nhị diện của các góc nhị diện \(\left[ {B,SA,C} \right]\), \(\left[ {A,BC,S} \right]\) và tính cos của chúng.

b) Gọi \(H\) và \(K\) lần lượt là hình chiếu của \(A\) trên \(SB\) và \(SC\). Chứng minh rằng \(\widehat {AKH}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\), và tính cos của nó.

Lời giải chi tiết

Giải bài 27 trang 99 sách bài tập toán 11 - Cánh diều 2

a) Do \(SA \bot \left( {ABC} \right)\) nên ta suy ra \(SA \bot AB\), \(SA \bot AC\) và \(SA \bot BC\). Suy ra \(\widehat {BAC}\) chính là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,C} \right]\), tức là \(\alpha = \widehat {BAC}\).

Tam giác \(ABC\) vuông tại \(B\), nên \(AC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}} = 5a\).

Như vậy \(\cos \alpha = \cos \widehat {BAC} = \frac{{AB}}{{AC}} = \frac{{3a}}{{5a}} = \frac{3}{5}\).

Tam giác \(ABC\) vuông tại \(B\), ta cũng suy ra \(BC \bot AB\). Do \(SA \bot BC\) nên ta suy ra \(BC \bot \left( {SAB} \right)\). Điều này dẫn tới \(BC \bot SB\).

Vì \(BC \bot SB\), \(BC \bot AB\) nên góc \(\widehat {SBA}\) chính là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\), tức là \(\beta = \widehat {SBA}\).

Tam giác \(SBA\) vuông tại \(A\), nên \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {3a} \right)}^2}} = 3\sqrt 2 a\).

Như vậy \(\cos \beta = \cos \widehat {SBA} = \frac{{AB}}{{SB}} = \frac{{3a}}{{3\sqrt 2 a}} = \frac{{\sqrt 2 }}{2}\).

b) Gọi \(H\) và \(K\) lần lượt là hình chiếu của \(A\) trên \(SB\) và \(SC\).

Theo câu a, ta có \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AH\). Mà ta có \(AH \bot SB\) nên suy ra \(AH \bot \left( {BSC} \right)\), điều này dẫn tới \(AH \bot SC\).

Do \(AH \bot SC\), \(AK \bot SC\) nên \(SC \bot \left( {AHK} \right)\), suy ra \(HK \bot SC\).

Như vậy ta có \(AK \bot SC\), \(HK \bot SC\) nên \(\widehat {AKH}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,H} \right]\). Do \(H \in \left( {SCB} \right)\) nên góc nhị diện \(\left[ {A,SC,H} \right]\) cũng chính là góc nhị diện \(\left[ {A,SC,B} \right]\). Do đó, \(\widehat {AKH}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\), tức là \(\gamma = \widehat {AKH}\).

Vì \(AH \bot \left( {BSC} \right)\) nên \(AH \bot HK\), do đó \(\cos \widehat {AKH} = \frac{{HK}}{{AK}}\).

Ta có \(AH = \frac{{SA.AB}}{{SB}} = \frac{{3a.3a}}{{3\sqrt 2 a}} = \frac{{3a\sqrt 2 }}{2}\) (do \(\Delta SAB\) vuông tại \(A\))

Và \(AK = \frac{{SA.AC}}{{SC}} = \frac{{3a.5a}}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( {5a} \right)}^2}} }} = \frac{{15{a^2}}}{{a\sqrt {34} }} = \frac{{15\sqrt {34} a}}{{34}}\) (do \(\Delta SAC\) vuông tại \(A\))

Suy ra \(HK = \sqrt {A{K^2} - A{H^2}} = \sqrt {{{\left( {\frac{{15a\sqrt {34} }}{{34}}} \right)}^2} - {{\left( {\frac{{3a\sqrt 2 }}{2}} \right)}^2}} = \frac{{6a\sqrt {17} }}{{17}}\).

Do đó, \(\cos \gamma = \cos \widehat {AKH} = \frac{{HK}}{{AK}} = \frac{{\frac{{6a\sqrt {17} }}{{17}}}}{{\frac{{15a\sqrt {34} }}{{34}}}} = \frac{{2\sqrt 2 }}{5}\).

Giải bài 27 trang 99 SBT Toán 11 Cánh Diều: Tổng quan và Phương pháp giải

Bài 27 trang 99 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.

Nội dung chi tiết bài 27 trang 99 SBT Toán 11 Cánh Diều

Bài 27 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh các đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 27 trang 99 SBT Toán 11 Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: (Ví dụ minh họa)

Cho hai điểm A(xA, yA) và B(xB, yB). Tìm tọa độ của vectơ AB.

Giải:

Tọa độ của vectơ AB được tính theo công thức: AB = (xB - xA, yB - yA).

Câu b: (Ví dụ minh họa)

Cho hai vectơ a = (x1, y1) và b = (x2, y2). Tính a + b.

Giải:

a + b = (x1 + x2, y1 + y2).

Mẹo giải nhanh bài tập vectơ

Để giải nhanh các bài tập về vectơ, các em có thể áp dụng một số mẹo sau:

  • Sử dụng các công thức tọa độ của vectơ một cách linh hoạt.
  • Biến đổi các đẳng thức vectơ về dạng đơn giản nhất.
  • Vẽ hình để trực quan hóa bài toán.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập Toán 11 Cánh Diều, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11.
  • Các bài giảng trực tuyến về vectơ.
  • Các trang web học Toán uy tín.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên, các em học sinh sẽ tự tin hơn khi giải bài 27 trang 99 sách bài tập Toán 11 Cánh Diều. Chúc các em học tập tốt!

Công thứcMô tả
AB = (xB - xA, yB - yA)Tọa độ của vectơ AB
a + b = (x1 + x2, y1 + y2)Phép cộng vectơ

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN