Tusach.vn xin giới thiệu lời giải chi tiết bài 46 trang 23 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Từ đồ thị hàm số \(y = \sin x\), tìm:
Đề bài
Từ đồ thị hàm số \(y = \sin x\), tìm:
a) Các giá trị của \(x\) để \(\sin x = \frac{1}{2}\).
b) Các khoảng giá trị của \(x\) để hàm số \(y = \sin x\) nhận giá trị dương.
Phương pháp giải - Xem chi tiết
Vẽ đồ thị hàm số \(y = \sin x\).
a) Vẽ đường thẳng \(y = \frac{1}{2}\) và xác định các giao điểm của đường thẳng này với đồ thị hàm số \(y = \sin x\).
b) Từ đồ thị hàm số \(y = \sin x\), xác định những phần đồ thị nằm phía trên trục hoành. Phần đồ thị đó chính là những giá trị dương của hàm số \(y = \sin x\).
Lời giải chi tiết
a) Ta có hình vẽ sau:

Từ hình vẽ, ta thấy giá trị của \(x\) để \(\sin x = \frac{1}{2}\) là hoành độ giao điểm của đường thẳng \(y = \frac{1}{2}\) với đồ thị hàm số \(y = \sin x\). Dựa vào hình vẽ trên, ta thấy \(\sin x = \frac{1}{2}\) khi \(x = \frac{\pi }{6} + k2\pi \) (các giao điểm màu đỏ) và \(x = \frac{{5\pi }}{6} + k2\pi \) (các giao điểm màu đen), với \(k \in \mathbb{Z}\).
b) Ta thấy phần đồ thị nằm phía trên trục hoành là những giá trị dương của hàm số \(y = \sin x\). Dựa vào hình vẽ dưới đây, ta thấy hàm số \(y = \sin x\) nhận giá trị dương khi \(x \in \left( {k2\pi ;\pi + k2\pi } \right)\)

Bài 46 trang 23 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 46 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 46 trang 23 SBT Toán 11 Cánh Diều. (Lưu ý: Nội dung lời giải chi tiết sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập. Do giới hạn độ dài, chúng tôi chỉ cung cấp hướng dẫn chung.)
Cho A(1; 2), B(3; 4). Tìm tọa độ của vectơ AB.
Giải:
Tọa độ của vectơ AB được tính theo công thức: AB = (xB - xA; yB - yA)
Thay số vào, ta có: AB = (3 - 1; 4 - 2) = (2; 2)
Vậy tọa độ của vectơ AB là (2; 2).
Để giải nhanh các bài tập về vectơ, bạn nên:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều hoặc các đề thi thử Toán 11. Việc luyện tập thường xuyên sẽ giúp bạn tự tin hơn khi làm bài kiểm tra.
Tusach.vn là website cung cấp lời giải bài tập Toán 11, Toán 12 và các môn học khác một cách nhanh chóng, chính xác và dễ hiểu. Chúng tôi hy vọng sẽ là người bạn đồng hành đáng tin cậy của bạn trên con đường chinh phục tri thức.
| Công thức vectơ quan trọng | Mô tả |
|---|---|
| AB = (xB - xA; yB - yA) | Tọa độ của vectơ AB |
| a + b = (ax + bx; ay + by) | Phép cộng vectơ |
| k.a = (kax; kay) | Phép nhân vectơ với một số thực |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập