Chào mừng các em học sinh đến với lời giải chi tiết bài 63 trang 51 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em tự tin hơn trong quá trình học tập và ôn luyện.
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Giải mỗi bất phương trình sau:
Đề bài
Giải mỗi bất phương trình sau:
a) \({\left( {0,2} \right)^{2x + 1}} > 1;\)
b) \({27^{2x}} \le \frac{1}{9};\)
c) \({\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge 4;\)
d) \({\left( {\frac{1}{{25}}} \right)^{x + 1}} < {125^{2x}};\)
e) \({\left( {\sqrt 2 - 1} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}};\)
g) \({\left( {0,5} \right)^{2{x^2} - x}} > {\left( {\sqrt 2 } \right)^{4x - 12}}.\)
Phương pháp giải - Xem chi tiết
Xét bất phương trình dạng \({a^x} > b\)
Với \(a > 1,{\rm{ }}b > 0\) thì bất phương trình có nghiệm \(x > {\log _a}b.\)
Với \(0 < a < 1,{\rm{ }}b > 0\) thì bất phương trình có nghiệm \(x < {\log _a}b.\)
Lời giải chi tiết
a) \({\left( {0,2} \right)^{2x + 1}} > 1 \Leftrightarrow 2x + 1 < {\log _{0,2}}1 \Leftrightarrow 2x + 1 < 0 \Leftrightarrow x < - \frac{1}{2}.\)
b) \({27^{2x}} \le \frac{1}{9} \Leftrightarrow {3^{6x}} \le {3^{ - 2}} \Leftrightarrow 6x \le - 2 \Leftrightarrow x \le - \frac{1}{3}.\)
c) \({\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge 4 \Leftrightarrow {\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge {\left( {\frac{1}{2}} \right)^{ - 2}} \Leftrightarrow {x^2} - 5x + 4 \le - 2 \Leftrightarrow {x^2} - 5x + 6 \le 0\)
\( \Leftrightarrow \left( {x - 2} \right)\left( {x - 3} \right) \le 0 \Leftrightarrow 2 \le x \le 3.\)
d) \({\left( {\frac{1}{{25}}} \right)^{x + 1}} < {125^{2x}} \Leftrightarrow {\left( {{5^{ - 2}}} \right)^{x + 1}} < {\left( {{5^3}} \right)^{2x}} \Leftrightarrow {5^{ - 2x - 2}} < {5^{6x}} \Leftrightarrow - 2x - 2 < 6x \Leftrightarrow x > - \frac{1}{4}.\)
e) Ta có:
\(\begin{array}{l}{\left( {\sqrt 2 - 1} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}} \Leftrightarrow {\left( {{{\left( {\sqrt 2 + 1} \right)}^{ - 1}}} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}}\\ \Leftrightarrow {\left( {\sqrt 2 + 1} \right)^{2 - 3x}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}} \Leftrightarrow 2 - 3x < 4 - x \Leftrightarrow 2x > - 2 \Leftrightarrow x > - 1.\end{array}\)
g) \({\left( {0,5} \right)^{2{x^2} - x}} > {\left( {\sqrt 2 } \right)^{^{4x - 12}}} \Leftrightarrow {\left( {{2^{ - 1}}} \right)^{2{x^2} - x}} > {\left( {{2^{\frac{1}{2}}}} \right)^{4x - 12}} \Leftrightarrow {2^{x - 2{x^2}}} > {2^{2x - 6}}\)
\( \Leftrightarrow x - 2{x^2} > 2x - 6 \Leftrightarrow 2{x^2} + x - 6 < 0 \Leftrightarrow \left( {2x - 3} \right)\left( {x + 2} \right) < 0 \Leftrightarrow - 2 < x < \frac{3}{2}.\)
Bài 63 trang 51 sách bài tập Toán 11 Cánh Diều thuộc chương trình học môn Toán lớp 11, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 63 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 63 trang 51 SBT Toán 11 Cánh Diều, chúng tôi sẽ trình bày chi tiết lời giải cho từng bài tập:
Đề bài: (Ví dụ về đề bài)
Lời giải: (Giải thích chi tiết từng bước giải, kèm theo hình vẽ minh họa nếu cần thiết)
Đề bài: (Ví dụ về đề bài)
Lời giải: (Giải thích chi tiết từng bước giải, kèm theo hình vẽ minh họa nếu cần thiết)
(Tương tự như trên, giải chi tiết từng bài tập)
Để giải bài tập Toán 11 hiệu quả, các em nên:
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và những hướng dẫn hữu ích trên đây, các em sẽ tự tin hơn trong việc giải bài 63 trang 51 sách bài tập Toán 11 Cánh Diều. Chúc các em học tập tốt và đạt kết quả cao!
| Chủ đề | Nội dung |
|---|---|
| Phép biến hình | Tịnh tiến, quay, đối xứng |
| Vectơ | Các phép toán vectơ |
| Phương trình | Đường thẳng, đường tròn |
| Tổng hợp kiến thức quan trọng | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập