1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 119 sách bài tập Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 59 trang 119 SBT Toán 11 Cánh Diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và nắm vững kiến thức liên quan đến nội dung bài học.

Chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với các bước giải chi tiết, giúp các em tự tin làm bài tập và nâng cao kết quả học tập.

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AB = a\).

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AB = a\).

a) Chứng minh răng \(C'D \bot \left( {BCD'} \right)\), \(BD' \bot C'D\) và \(\left( {BC'D} \right) \bot \left( {BCD'} \right)\).

b) Tính góc giữa hai đường thẳng \(BD\) và \(A'D'\).

c) Tính góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {CDD'C'} \right)\).

d) Tính số đo của góc nhị diện \(\left[ {B,DD',C} \right]\).

e) Tính khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {BCD'} \right)\).

g) Chứng minh \(B'C'\parallel \left( {BCD'} \right)\) và tính khoảng cách giữa đường thẳng \(B'C'\) và mặt phẳng \(\left( {BCD'} \right)\).

h) Tính thể tích của khối tứ diện \(C'BCD\) và tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {BC'D} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 59 trang 119 sách bài tập toán 11 - Cánh diều 1

a) Để chứng minh đường thẳng vuông góc với mặt phẳng, ta chứng minh đường thẳng đó vuông góc với 2 đường thẳng bất kỳ cắt nhau trong mặt phẳng.

Để chứng minh 2 mặt phẳng vuông góc, ta cần chỉ là 1 đường thẳng nằm trên mặt phẳng này và vuông góc với mặt phẳng kia.

b) Chỉ ra \(AD\parallel A'D'\), nên góc giữa \(BD\) và \(A'D'\) cũng bằng góc giữa \(BD\) và \(AD\), và bằng \(\widehat {ADB}\).

c) Ta chứng minh \(BC \bot \left( {DCC'D'} \right)\), do đó góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) là góc \(\widehat {BDC}\).

d) Ta chứng minh \(\widehat {BDC}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,DD',C} \right]\).

e) Gọi \(I\) là giao điểm của \(D'C\) và \(DC'\). Theo câu a, ta có \(DI \bot \left( {BCD'} \right)\), từ đó suy ra khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(DI\).

g) Để chứng minh \(B'C'\parallel \left( {BCD'} \right)\), ta chứng minh \(B'C'\) song song với một đường thẳng trong mặt phẳng \(\left( {BCD'} \right)\). Do \(B'C'\parallel \left( {BCD'} \right)\) nên khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) bằng khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\).

Theo câu a, ta có \(IC' \bot \left( {BCD'} \right)\), từ đó suy ra \(C'I\) chính là khoảng cách cần tìm.

h) Công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\), với \(S\) là diện tích đáy và \(h\) là chiều cao của khối chóp đó.

Do \(CC' \bot \left( {BCD} \right)\) nên thể tích tứ diện \(C'BCD\) là \(V = \frac{1}{3}CC'.{S_{BCD}}\).

Do thể tích tứ diện \(C'BCD\) cũng có thể được tính bằng công thức \(V = \frac{1}{3}{d_{C,\left( {BC'D} \right)}}.{S_{BC'D}}\), ta suy ra \({d_{C,\left( {BC'D} \right)}} = \frac{{3V}}{{{S_{BC'D}}}}\).

Lời giải chi tiết

Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều 2

a) Do \(ABCD.A'B'C'D'\) là hình lập phương, nên ta có \(BC \bot \left( {DCC'D'} \right)\), điều này suy ra \(BC \bot C'D\).

Vì \(DCC'D'\) là hình vuông, nên ta có \(C'D \bot CD'\).

Vậy ta có \(BC \bot C'D\), \(C'D \bot CD'\) nên ta có \(C'D \bot \left( {BCD'} \right)\). Ta có điều phải chứng minh.

Do \(C'D \bot \left( {BCD'} \right)\), ta suy ra \(BD' \bot C'D\).

Do \(C'D \bot \left( {BCD'} \right)\), mà \(C'D \subset \left( {BC'D} \right)\),ta suy ra \(\left( {BC'D} \right) \bot \left( {BCD'} \right)\).

b) Dễ thấy rằng do \(ABCD.A'B'C'D'\) là hình lập phương, ta có \(AD\parallel A'D'\), nên góc giữa \(BD\) và \(A'D'\) cũng bằng góc giữa \(BD\) và \(AD\), và bằng \(\widehat {ADB}\).

Do \(ABCD\) là hình vuông, nên \(\widehat {ADB} = {45^o}\).

Vậy góc giữa \(BD\) và \(A'D'\) bằng \({45^o}\).

c) Do \(ABCD.A'B'C'D'\) là hình lập phương, nên ta có \(BC \bot \left( {DCC'D'} \right)\). Điều này suy ra \(C\) là hình chiếu của \(B\) trên \(\left( {DCC'D'} \right)\). Như vậy, góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) là góc \(\widehat {BDC}\).

Do \(ABCD\) là hình vuông, nên \(\widehat {BDC} = {45^o}\).

Vậy góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) bằng \({45^o}\).

d) Do \(ABCD.A'B'C'D'\) là hình lập phương, ta suy ra \(DD' \bot \left( {ABCD} \right)\). Điều này dẫn tới \(DD' \bot BD\) và \(DD' \bot CD\). Vậy \(\widehat {BDC}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,DD',C} \right]\). Theo câu c, ta có \(\widehat {BDC} = {45^o}\). Vậy số đo của góc nhị diện \(\left[ {B,DD',C} \right]\) bằng \({45^o}\).

e) Gọi \(I\) là giao điểm của \(D'C\) và \(DC'\). Theo câu a, ta có \(C'D \bot \left( {BCD'} \right)\), nên \(DI \bot \left( {BCD'} \right)\). Vậy khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(DI\).

Vì \(DCC'D'\) là hình vuông cạnh \(a\), ta suy ra \(C'D = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \). Suy ra \(DI = C'I = \frac{{C'D}}{2} = \frac{{a\sqrt 2 }}{2}\).

Vậy khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\).

g) Do \(ABCD.A'B'C'D'\) là hình lập phương, ta suy ra \(B'C'\parallel BC\).

Mà \(BC \subset \left( {BCD} \right)\) nên ta suy ra \(B'C'\parallel \left( {BCD'} \right)\).

Vì \(B'C'\parallel \left( {BCD'} \right)\), nên khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) cũng bằng khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\).

Theo câu a, ta có \(C'D \bot \left( {BCD'} \right)\), điều này cũng có nghĩa \(C'I \bot \left( {BCD'} \right)\), tức khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(C'I\). Mà theo câu e, vì \(C'I = \frac{{a\sqrt 2 }}{2}\), ta kết luận rằng khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\).

h) Do \(CC' \bot \left( {BCD} \right)\) nên thể tích tứ diện \(C'BCD\) là

\(V = \frac{1}{3}CC'.{S_{BCD}} = \frac{1}{3}CC'.\frac{{BC.CD}}{2} = \frac{{a.a.a}}{6} = \frac{{{a^3}}}{6}\).

Tam giác \(BC'D\) có \(BC' = C'D = BD = a\sqrt 2 \) (do chúng đều là đường chéo của các mặt của hình lập phương) nên tam giác đó đều.

Diện tích tam giác \(BC'D\) bằng \({S_{BC'D}} = \frac{{B{D^2}\sqrt 3 }}{4} = \frac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{2}\).

Vì thể tích tứ diện \(C'BCD\) cũng có thể được tính bằng công thức \(V = \frac{1}{3}{d_{C,\left( {BC'D} \right)}}.{S_{BC'D}}\), ta suy ra \({d_{C,\left( {BC'D} \right)}} = \frac{{3.\frac{{{a^3}}}{6}}}{{\frac{{{a^2}\sqrt 3 }}{2}}} = \frac{{a\sqrt 3 }}{3}\).

Vậy khoảng cách từ \(C\) đến mặt phẳng \(\left( {BC'D} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\).

Giải bài 59 trang 119 sách bài tập Toán 11 Cánh Diều: Tổng quan

Bài 59 trang 119 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.

Nội dung bài tập

Bài 59 thường bao gồm các dạng bài tập sau:

  • Xác định ảnh của điểm, đường thẳng, hình qua phép biến hình: Yêu cầu học sinh xác định vị trí mới của các đối tượng hình học sau khi thực hiện một phép biến hình cụ thể.
  • Tìm phép biến hình: Đặt bài toán tìm phép biến hình biến một đối tượng hình học thành một đối tượng khác.
  • Chứng minh tính chất hình học: Sử dụng các phép biến hình để chứng minh các tính chất liên quan đến sự bằng nhau, song song, vuông góc của các hình.

Lời giải chi tiết bài 59 trang 119 SBT Toán 11 Cánh Diều

Để giải quyết bài 59 trang 119 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Định nghĩa các phép biến hình: Hiểu rõ định nghĩa, tính chất và biểu thức toán học của phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm.
  2. Cách xác định ảnh của điểm, đường thẳng, hình: Biết cách sử dụng công thức hoặc phương pháp hình học để xác định vị trí mới của các đối tượng sau khi thực hiện phép biến hình.
  3. Ứng dụng các phép biến hình vào giải toán: Sử dụng các phép biến hình để đơn giản hóa bài toán, tìm ra mối liên hệ giữa các đối tượng hình học và chứng minh các tính chất.

Dưới đây là lời giải chi tiết cho từng phần của bài 59 (ví dụ, giả sử bài 59 có 3 câu):

Câu a:

Đề bài: (Ví dụ về đề bài)

Lời giải: (Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần)

Câu b:

Đề bài: (Ví dụ về đề bài)

Lời giải: (Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần)

Câu c:

Đề bài: (Ví dụ về đề bài)

Lời giải: (Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần)

Mẹo giải nhanh

Để giải nhanh các bài tập về phép biến hình, bạn có thể áp dụng một số mẹo sau:

  • Vẽ hình: Vẽ hình chính xác và đầy đủ các yếu tố của bài toán.
  • Sử dụng tính chất đối xứng: Tận dụng các tính chất đối xứng của hình để đơn giản hóa bài toán.
  • Chọn hệ tọa độ thích hợp: Chọn hệ tọa độ sao cho việc tính toán trở nên dễ dàng hơn.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều hoặc các tài liệu tham khảo khác.

Kết luận

Bài 59 trang 119 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng các kiến thức về phép biến hình. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. Tusach.vn luôn sẵn sàng hỗ trợ bạn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN