Tusach.vn xin giới thiệu lời giải chi tiết bài 15 trang 35 SBT Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Cho \(x,y\) là các số thực dương và số thực a thỏa mãn:
Đề bài
Cho \(x,y\) là các số thực dương và số thực a thỏa mãn:
\(a = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}} + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}} \). Chứng minh rằng \({a^{\frac{2}{3}}} = {x^{\frac{2}{3}}} + {y^{\frac{2}{3}}}.\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất lũy thừa với số mũ hữu tỉ để rút gọn biểu thức.
Lời giải chi tiết
Đặt \(\left\{ \begin{array}{l}b = \sqrt[6]{a}\\m = \sqrt[6]{x}\\n = \sqrt[6]{y}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = {b^6}\\x = {m^6}\\y = {n^6}\end{array} \right.\left( {m,n,b > 0} \right)\)
Theo đề bài:
\(\begin{array}{l}a = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}} + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}} \Leftrightarrow {b^6} = \sqrt {{m^{12}} + \sqrt[3]{{{m^{24}}{n^{12}}}}} + \sqrt {{n^{12}} + \sqrt[3]{{{m^{12}}{n^{24}}}}} \\ \Leftrightarrow {b^6} = \sqrt {{m^{12}} + {m^8}{n^4}} + \sqrt {{n^{12}} + {m^4}{n^8}} \Leftrightarrow {b^6} = \sqrt {{m^8}\left( {{m^4} + {n^4}} \right)} + \sqrt {{n^8}\left( {{m^4} + {n^4}} \right)} \end{array}\)
\(\begin{array}{l} \Leftrightarrow {b^6} = {m^4}\sqrt {{m^4} + {n^4}} + {n^4}\sqrt {{m^4} + {n^4}} \Leftrightarrow {b^6} = \left( {{m^4} + {n^4}} \right)\sqrt {{m^4} + {n^4}} \\ \Leftrightarrow {b^6} = {\left( {\sqrt {{m^4} + {n^4}} } \right)^3} \Leftrightarrow {b^2} = \sqrt {{m^4} + {n^4}} \Leftrightarrow {b^4} = {m^4} + {n^4}\end{array}\)
\({\rm{hay }}{a^{\frac{2}{3}}} = {x^{\frac{2}{3}}} + {y^{\frac{2}{3}}}.\)
Bài 15 trang 35 Sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, phương trình lượng giác và các tính chất của hàm số để giải quyết các bài toán cụ thể.
Để giải quyết bài 15 trang 35 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Câu 1: Xác định tập xác định của hàm số y = tan(2x + π/3).
Giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ (k ∈ Z). Suy ra 2x ≠ π/6 + kπ (k ∈ Z). Vậy x ≠ π/12 + kπ/2 (k ∈ Z). Tập xác định của hàm số là D = R \ {π/12 + kπ/2 | k ∈ Z}.
Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 15 trang 35 Sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Bằng cách nắm vững các kiến thức cơ bản, áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách hiệu quả và đạt kết quả tốt trong môn Toán.
Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp ích cho các bạn học sinh trong quá trình học tập. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập