Tusach.vn cung cấp lời giải chi tiết và dễ hiểu bài 21 trang 50 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải toán, chuẩn bị tốt cho các bài kiểm tra và kỳ thi sắp tới.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và tiện lợi nhất cho học sinh.
Cho ba số \(\frac{1}{{b + c}}\), \(\frac{1}{{c + a}}\), \(\frac{1}{{a + b}}\) theo thứ tự lập thành cấp số cộng.
Đề bài
Cho ba số \(\frac{1}{{b + c}}\), \(\frac{1}{{c + a}}\), \(\frac{1}{{a + b}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \({a^2}\), \({b^2}\), \({c^2}\) theo thứ tự cũng lập thành một cấp số cộng.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của cấp số cộng: Với dãy số \(\left( {{u_n}} \right)\) là cấp số cộng thì \({u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} = d\)
Lời giải chi tiết
Vì ba số \(\frac{1}{{b + c}}\), \(\frac{1}{{c + a}}\), \(\frac{1}{{a + b}}\)theo thứ tự lập thành cấp số cộng, nên ta có:
\(\frac{1}{{a + b}} - \frac{1}{{c + a}} = \frac{1}{{c + a}} - \frac{1}{{b + c}} \Leftrightarrow \frac{1}{{a + b}} + \frac{1}{{b + c}} = \frac{2}{{c + a}} \Leftrightarrow \frac{{b + c + a + b}}{{\left( {a + b} \right)\left( {b + c} \right)}} = \frac{2}{{c + a}}\)
\( \Leftrightarrow \frac{{a + c + 2b}}{{\left( {a + b} \right)\left( {b + c} \right)}} = \frac{2}{{\left( {c + a} \right)}} \Leftrightarrow \left( {a + c + 2b} \right)\left( {a + c} \right) = 2\left( {a + b} \right)\left( {b + c} \right)\)
\( \Leftrightarrow {\left( {a + c} \right)^2} + 2b\left( {a + c} \right) = 2\left( {ac + {b^2} + ab + bc} \right)\)
\( \Leftrightarrow {a^2} + {c^2} + 2ac + 2ab + 2bc = 2ac + 2{b^2} + 2ab + 2bc \Leftrightarrow {a^2} + {c^2} = 2{b^2}\)
\( \Leftrightarrow {a^2} - {b^2} = {b^2} - {c^2}\)
Suy ra ba số \({a^2}\),\({b^2}\), \({c^2}\) theo thứ tự cũng lập thành một cấp số cộng.
Bài toán được chứng minh.
Bài 21 trang 50 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, đạo hàm của hàm hợp, và đạo hàm của hàm lượng giác để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức lý thuyết và kỹ năng thực hành là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 21 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 21 trang 50 SBT Toán 11 Cánh Diều:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Lời giải:
f'(x) = 6x + 2
Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x)
Lời giải:
g'(x) = 2cos(2x)
Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)3
Lời giải:
h'(x) = 3(x2 + 1)2 * 2x = 6x(x2 + 1)2
Để giải nhanh và hiệu quả các bài tập về đạo hàm, bạn nên:
Tusach.vn là một website học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập và giải bài tập Toán 11, bao gồm:
Với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy hiện đại, Tusach.vn cam kết giúp học sinh học Toán 11 hiệu quả và đạt kết quả cao.
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 21 trang 50 SBT Toán 11 Cánh Diều. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập