Tusach.vn xin giới thiệu lời giải chi tiết bài 58 trang 30 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Giải phương trình:
Đề bài
Giải phương trình:
a) \(\sin 3x = \frac{{\sqrt 3 }}{2}\)
b) \(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\)
c) \(\cos \left( {3x + \frac{\pi }{3}} \right) = - \frac{1}{2}\)
d) \(2\cos x + \sqrt 3 = 0\)
e) \(\sqrt 3 \tan x - 1 = 0\)
g) \(\cot \left( {x + \frac{\pi }{5}} \right) = 1\)
Phương pháp giải - Xem chi tiết
Sử dụng các kết quả sau:
Lời giải chi tiết
a) Ta có \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\), phương trình trở thành:
\(\sin 3x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Ta có \(\sin \left( { - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\), phương trình trở thành:
\(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \sin \left( { - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} = \pi + \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = - \frac{\pi }{2} + k2\pi \\\frac{x}{2} = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \pi + k4\pi \\x = 2\pi + k4\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Ta có \(\cos \frac{{2\pi }}{3} = \frac{{ - 1}}{2}\), phương trình trở thành:
\(\cos \left( {3x + \frac{\pi }{3}} \right) = \cos \frac{{2\pi }}{3} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \\3x + \frac{\pi }{3} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = - \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.\)
\(\left( {k \in \mathbb{Z}} \right)\)
d) \(2\cos x + \sqrt 3 = 0 \Leftrightarrow \cos x = - \frac{{\sqrt 3 }}{2}\).
Ta có: \(\cos \frac{{5\pi }}{6} = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành: \(\cos x = \cos \frac{{5\pi }}{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
e) \(\sqrt 3 \tan x - 1 = 0 \Leftrightarrow \tan x = \frac{1}{{\sqrt 3 }}\)
Ta có \(\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\), phương trình trở thành: \(\tan x = \tan \frac{\pi }{6} \Leftrightarrow x = \frac{\pi }{6} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
f) Ta có \(\cot \frac{\pi }{4} = 1\), phương trình trở thành:
\(\cot \left( {x + \frac{\pi }{5}} \right) = \cot \frac{\pi }{4} \Leftrightarrow x + \frac{\pi }{5} = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{20}} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
Bài 58 trang 30 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải quyết các bài toán liên quan đến hình học sử dụng vectơ.
Để giải quyết bài 58 trang 30 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho bài 58 trang 30 SBT Toán 11 Cánh Diều. (Lưu ý: Nội dung lời giải cụ thể sẽ phụ thuộc vào đề bài của bài 58. Ví dụ minh họa:)
Đề bài: Cho tam giác ABC. Chứng minh rằng: overrightarrow{AB} +overrightarrow{BC} =overrightarrow{AC}
Lời giải:
Để học tốt môn Toán 11, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 58 trang 30 SBT Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi giải quyết bài tập này và đạt kết quả tốt trong môn Toán 11.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập