Tusach.vn xin giới thiệu lời giải chi tiết bài 71 trang 32 Sách bài tập Toán 11 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải bài tập rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, cập nhật nhanh chóng và dễ dàng tiếp cận. Hãy cùng tusach.vn khám phá lời giải bài tập này ngay nhé!
: Cho \(\sin \left( {{{45}^o} - \alpha } \right) = \frac{1}{{2\sqrt 2 }}\).
Đề bài
Cho \(\sin \left( {{{45}^o} - \alpha } \right) = \frac{1}{{2\sqrt 2 }}\).
a) Chứng minh rằng \({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \sin 2\alpha }}{2}\).
b) Tính \(\sin 2\alpha \).
Phương pháp giải - Xem chi tiết
a) Sử dụng công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\), \(\sin x = \cos \left( {{{90}^o} - x} \right)\).
b) Áp dụng kết quả câu a.
Lời giải chi tiết
a) Ta có: \({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \cos \left[ {2\left( {{{45}^o} - \alpha } \right)} \right]}}{2} = \frac{{1 - \cos \left( {{{90}^o} - 2\alpha } \right)}}{2} = \frac{{1 - \sin 2\alpha }}{2}\)
Bài toán được chứng minh.
b) Theo câu a ta có:
\({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \sin 2\alpha }}{2} \Rightarrow \sin 2\alpha = 1 - 2{\sin ^2}\left( {{{45}^o} - \alpha } \right)\)
Do \(\sin \left( {{{45}^o} - \alpha } \right) = \frac{1}{{2\sqrt 2 }}\)nên \(\sin 2\alpha = 1 - 2{\left( {\frac{1}{{2\sqrt 2 }}} \right)^2} = \frac{3}{4}\)
Bài 71 trang 32 Sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, phương trình lượng giác và các tính chất của hàm số để giải quyết.
Bài 71 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: Xác định tập xác định của hàm số y = tan(2x).
Lời giải: Hàm số y = tan(2x) xác định khi và chỉ khi cos(2x) ≠ 0. Điều này tương đương với 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2, k ∈ Z}.
Đề bài: Vẽ đồ thị hàm số y = sin(x).
Lời giải: Đồ thị hàm số y = sin(x) là một đường cong sin có chu kỳ 2π, biên độ 1, đi qua gốc tọa độ và nhận trục Ox làm trục đối xứng. Các điểm đặc biệt trên đồ thị là (0,0), (π/2, 1), (π, 0), (3π/2, -1), (2π, 0).
Để giải tốt các bài tập về hàm số lượng giác, các em cần nắm vững các kiến thức sau:
Tusach.vn là một website học tập trực tuyến uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập Toán 11. Chúng tôi có đội ngũ giáo viên giàu kinh nghiệm, luôn cập nhật nội dung mới nhất và đảm bảo tính chính xác của các đáp án. Ngoài ra, tusach.vn còn cung cấp nhiều tài liệu học tập hữu ích khác, giúp các em học sinh ôn tập và nâng cao kiến thức.
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và giải quyết các bài tập Toán 11 một cách hiệu quả!
| Chương | Nội dung chính |
|---|---|
| 1 | Hàm số và đồ thị |
| 2 | Phương trình và bất phương trình |
| 3 | Hàm số lượng giác |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập