Tusach.vn xin giới thiệu lời giải chi tiết bài 48 trang 117 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất để hỗ trợ học sinh trong quá trình học tập.
Hình biểu diễn của hai đường thẳng cắt nhau có thể là hai đường thẳng song song được không? Vì sao?
Đề bài
Hình biểu diễn của hai đường thẳng cắt nhau có thể là hai đường thẳng song song được không? Vì sao?
Phương pháp giải - Xem chi tiết
Giả sử hai đường thẳng \(a\) và \(b\) cắt nhau tại \(O\) và hình chiếu song song của \(a\), \(b\), \(O\) theo phương chiếu là đường thẳng bất kỳ \(c\) lần lượt là \(a'\), \(b'\), \(O'\). Ta cần xác định xem \(a'\) và \(b'\) có song song với nhau không.
Lời giải chi tiết

Giả sử hai đường thẳng \(a\) và \(b\) cắt nhau tại \(O\) và hình chiếu song song của \(a\), \(b\), \(O\) theo phương chiếu là đường thẳng bất kỳ \(c\) lần lượt là \(a'\), \(b'\), \(O'\).
Ta nhận xét rằng với mỗi điểm \(M \in a\) thì hình chiếu song song \(M'\) của \(M\) theo phương chiếu \(c\) cũng nằm trên \(a'\). Do đó, vì \(O \in a\) nên ta có \(O' \in a'\).
Tương tự ta cũng có \(O' \in b'\). Như vậy \(a'\) và \(b'\) có điểm chung \(O'\), nên chúng không song song với nhau.
Vậyhình biểu diễn của hai đường thẳng cắt nhau không thể là hai đường thẳng song song.
Bài 48 trang 117 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập và củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng.
Bài 48 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 48 trang 117 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ minh họa (giả định bài 48 có nội dung cụ thể):
Cho đường thẳng (d): x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Chứng minh rằng đường thẳng (d) song song với mặt phẳng (P).
Lời giải:
Vectơ chỉ phương của đường thẳng (d) là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).
Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng (d) không vuông góc với mặt phẳng (P).
Tuy nhiên, nếu bài toán yêu cầu chứng minh đường thẳng song song với mặt phẳng, cần kiểm tra xem đường thẳng có điểm thuộc mặt phẳng hay không. Nếu không, thì đường thẳng song song với mặt phẳng.
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 11. Chúng tôi cam kết mang đến cho học sinh những trải nghiệm học tập tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập