Tusach.vn xin giới thiệu lời giải chi tiết bài 39 trang 82, 83 SBT Toán 11 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và cập nhật nhanh chóng nhất.
Quan sát đồ thị hàm số trong hình dưới đây và cho biết:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\) bằng:
A. \(2\)
B. \(1\)
C. \( + \infty \)
D. \( - \infty \)
Phương pháp giải:
Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.
Lời giải chi tiết:
Từ đồ thị, ta nhận xét rằng khi \(x \to + \infty \) thì \(f\left( x \right)\) tiến dần tới 2. Do vậy \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Đáp án đúng là A.
\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng:
A. \(2\)
B. \(1\)
C. \( + \infty \)
D. \( - \infty \)
Phương pháp giải:
Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.
Lời giải chi tiết:
Từ đồ thị, ta nhận xét rằng khi \(x\) tiến tới 0 về bên phải thì \(f\left( x \right)\) tiến dần tới âm vô cực. Do vậy \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \infty \). Đáp án đúng là D.
Hàm số \(y = f\left( x \right)\) liên tục trên khoảng:
A. \(\left( { - \infty ;1} \right)\)
B. \(\left( { - \infty ; + \infty } \right)\)
C. \(\left( {1; + \infty } \right)\)
D. \(\left( { - \infty ;2} \right)\)
Phương pháp giải:
Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.
Lời giải chi tiết:
Nhận xét rằng hàm số chỉ nằm ở bên phải trục tung, nên tập xác định của chúng là \(\left( {0, + \infty } \right)\). Suy ra các đáp án A, B, D sai.
Nhận xét rằng trên khoảng \(\left( {1, + \infty } \right)\), đồ thị hàm số là “đường liền”, nên hàm số liên tục trên khoảng \(\left( {1, + \infty } \right)\).
Đáp án đúng là C.
Bài 39 trang 82, 83 sách bài tập Toán 11 Cánh Diều thuộc chương trình học môn Toán lớp 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, phương trình lượng giác và các tính chất của hàm số để giải quyết các bài toán cụ thể.
Bài 39 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 39 trang 82, 83 sách bài tập Toán 11 Cánh Diều:
Cho hàm số y = 2sin(x + π/3). Xác định chu kỳ, biên độ và pha ban đầu của hàm số.
Lời giải:
Vẽ đồ thị hàm số y = cos(2x).
Lời giải:
Để vẽ đồ thị hàm số y = cos(2x), ta thực hiện các bước sau:
Để giải tốt các bài tập về hàm số lượng giác, bạn nên:
Tusach.vn là website cung cấp lời giải bài tập Toán 11, Toán 12 và các môn học khác một cách nhanh chóng và chính xác. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp các phương pháp giải bài tập hiệu quả, giúp bạn học tập tốt hơn. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích!
| Chương | Nội dung chính |
|---|---|
| 1 | Hàm số và đồ thị |
| 2 | Phương trình, bất phương trình |
| 3 | Hàm số lượng giác |
| Nguồn: Sách bài tập Toán 11 Cánh Diều | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập