Tusach.vn xin giới thiệu lời giải chi tiết bài 54 trang 57 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\)
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\)
a) Viết sáu số hạng đầu của dãy số.
b) Chứng minh rằng \({u_{n + 6}} = {u_n}\) với mọi \(n \ge 1\)
c) Tính tổng 27 số hạng đầu của dãy số.
Phương pháp giải - Xem chi tiết
a) Thay \(n = 1\),\(n = 2\), \(n = 3\), \(n = 4\), \(n = 5\), \(n = 6\) vào biểu thức \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\) để tính \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\).
b) Thay \(n\) bởi \(n + 6\) vào biểu thức \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\) và chú ý rằng \(\cos \left( {x + k2\pi } \right) = \cos x\).
c) Sử dụng kết quả câu b.
Lời giải chi tiết
a) Ta có:
\({u_1} = \cos \left[ {\left( {2.1 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {3\frac{\pi }{6}} \right) = \cos \frac{\pi }{2} = 0\)
\({u_2} = \cos \left[ {\left( {2.2 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {5\frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}\)
\({u_3} = \cos \left[ {\left( {2.3 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {7\frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}\)
\({u_4} = \cos \left[ {\left( {2.4 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {9\frac{\pi }{6}} \right) = \cos \frac{{3\pi }}{2} = 0\)
\({u_5} = \cos \left[ {\left( {2.5 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {11\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\)
\({u_6} = \cos \left[ {\left( {2.6 + 1} \right)\frac{\pi }{6}} \right] = \cos \left( {13\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\)
Vậy sáu số hạng đầu của dãy số là \(0, - \frac{{\sqrt 3 }}{2}, - \frac{{\sqrt 3 }}{2},0,\frac{{\sqrt 3 }}{2},\frac{{\sqrt 3 }}{2}\).
b) Ta có:
\({u_{n + 6}} = \cos \left[ {\left( {2\left( {n + 6} \right) + 1} \right)\frac{\pi }{6}} \right] = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6} + 12\frac{\pi }{6}} \right] = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6} + 2\pi } \right]\)
\( = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right] = {u_n}\)
Bài toán được chứng minh.
c) Theo câu b, ta có \({u_{n + 6}} = {u_n}\), nên vì vậy ta có:
\({u_1} = {u_7} = {u_{13}} = {u_{19}} = {u_{25}}\),
\({u_2} = {u_8} = {u_{14}} = {u_{20}} = {u_{26}}\),
\({u_3} = {u_9} = {u_{15}} = {u_{21}} = {u_{27}}\),
\({u_4} = {u_{10}} = {u_{16}} = {u_{22}}\),
\({u_5} = {u_{11}} = {u_{17}} = {u_{23}}\),
\({u_6} = {u_{12}} = {u_{18}} = {u_{24}}\).
Do đó, \({S_{27}} = 4\left( {{u_1} + {u_2} + {u_3} + {u_4} + {u_5} + {u_6}} \right) + {u_1} + {u_2} + {u_3}\)
\( = 4\left( {0 + \frac{{ - \sqrt 3 }}{2} + \frac{{ - \sqrt 3 }}{2} + 0 + \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2} + 0} \right) + 0 + \frac{{ - \sqrt 3 }}{2} + \frac{{ - \sqrt 3 }}{2} = - \sqrt 3 \)
Bài 54 trang 57 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh:
Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).)
Lời giải:
Để giải bài toán này, ta thực hiện các bước sau:
(Tiếp tục trình bày lời giải chi tiết với các bước tính toán cụ thể, sử dụng các công thức và giải thích rõ ràng.)
Để củng cố kiến thức về bài này, các em có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều hoặc các đề thi thử. Ngoài ra, các em cũng có thể tham khảo các tài liệu học tập trực tuyến hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.
Một số bài tập tương tự có thể bao gồm:
Tusach.vn luôn nỗ lực để cung cấp những giải pháp học tập hiệu quả và chất lượng nhất cho học sinh. Chúng tôi hy vọng rằng lời giải chi tiết bài 54 trang 57 SBT Toán 11 Cánh Diều này sẽ giúp các em hiểu rõ hơn về kiến thức và kỹ năng giải toán. Hãy truy cập tusach.vn thường xuyên để cập nhật những thông tin mới nhất và khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chương | Bài | Trang |
|---|---|---|
| Đường thẳng và mặt phẳng trong không gian | 54 | 57 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập