Tusach.vn xin giới thiệu lời giải chi tiết bài 9 trang 11 sách bài tập Toán 11 Cánh Diều. Bài giải này được xây dựng dựa trên chương trình học và đáp án chính thức của Bộ Giáo dục và Đào tạo.
Chúng tôi luôn cố gắng cung cấp những lời giải dễ hiểu, chính xác và đầy đủ nhất để giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Chứng minh rằng:
Đề bài
Chứng minh rằng:
a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\).
b) \({\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\).
Phương pháp giải - Xem chi tiết
a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\)
Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).
b) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\); Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).
Lời giải chi tiết
a) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x\)
\( = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x\)
Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra
\({1^2} = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\)
Bài toán được chứng minh.
b) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3} + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)
\( = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)
Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra
\(1 = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\)
Bài toán được chứng minh.
Bài 9 trang 11 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Đây là một bài tập quan trọng giúp học sinh củng cố kiến thức về các hàm số lượng giác cơ bản như sin, cosin, tang, cotang và cách xác định tập xác định, tập giá trị của chúng.
Bài 9 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 9 trang 11 SBT Toán 11 Cánh Diều, chúng ta cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử chúng ta có hàm số y = sin(x). Tập xác định của hàm số này là R. Tập giá trị của hàm số là [-1, 1]. Đồ thị của hàm số là một đường cong lượn sóng với biên độ là 1 và chu kỳ là 2π.
Để học tốt môn Toán 11, các em có thể tham khảo các tài liệu sau:
Bài 9 trang 11 SBT Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Tusach.vn cung cấp, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập