1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 31 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 31 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 31 trang 21 SBT Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 31 trang 21 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.

Tập xác định của hàm số (y = sqrt {1 + cos 2x} ) là:

Đề bài

Tập xác định của hàm số \(y = \sqrt {1 + \cos 2x} \) là:

A. \(\emptyset \)

B. \(\mathbb{R}\)

C. \(\left[ { - 1; + \infty } \right)\)

D. \(\left[ { - \frac{1}{2}; + \infty } \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 31 trang 21 sách bài tập toán 11 - Cánh diều 1

Hàm số xác định khi \(1 + \cos 2x \ge 0\)

Xác định miền giá trị của biểu thức \(1 + \cos 2x\)và kết luận.

Lời giải chi tiết

Biểu thức \(y = \sqrt {1 + \cos 2x} \)có nghĩa khi \(1 + \cos 2x \ge 0\).

Do với \(\forall x \in \mathbb{R}\), ta có \(\cos 2x \ge - 1 \Rightarrow 1 + \cos 2x \ge 0\).

Như vậy hàm số \(y = \sqrt {1 + \cos 2x} \)có tập xác định là \(\mathbb{R}\).

Đáp án đúng là B.

Giải bài 31 trang 21 SBT Toán 11 Cánh Diều: Tổng quan và Phương pháp giải

Bài 31 trang 21 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào kiến thức về đạo hàm của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các công thức đạo hàm cơ bản của sinx, cosx, tanx, cotx và các quy tắc tính đạo hàm như quy tắc cộng, trừ, nhân, chia, và quy tắc hàm hợp.

Nội dung chi tiết bài 31 trang 21 SBT Toán 11 Cánh Diều

Bài 31 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số lượng giác đơn giản: Ví dụ: y = sin(2x), y = cos(x^2), y = tan(3x).
  • Tính đạo hàm của hàm số lượng giác phức tạp: Sử dụng quy tắc hàm hợp để tính đạo hàm của các hàm số có dạng y = f(g(x)), trong đó f và g là các hàm số lượng giác.
  • Tìm đạo hàm cấp hai: Tính đạo hàm của đạo hàm đã tìm được ở bước trước.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị của hàm số lượng giác: Tìm các điểm cực đại, cực tiểu của hàm số.

Lời giải chi tiết bài 31 trang 21 SBT Toán 11 Cánh Diều

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 31 trang 21 SBT Toán 11 Cánh Diều:

Câu a)

Đề bài: Tính đạo hàm của hàm số y = sin(x + π/3)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp: y' = cos(x + π/3) * (x + π/3)' = cos(x + π/3)

Câu b)

Đề bài: Tính đạo hàm của hàm số y = cos(2x - π/4)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp: y' = -sin(2x - π/4) * (2x - π/4)' = -2sin(2x - π/4)

Câu c)

Đề bài: Tính đạo hàm của hàm số y = tan(x^2 + 1)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp: y' = (1/cos^2(x^2 + 1)) * (x^2 + 1)' = (1/cos^2(x^2 + 1)) * 2x = (2x/cos^2(x^2 + 1))

Mẹo giải nhanh và hiệu quả

Để giải nhanh và hiệu quả các bài tập về đạo hàm hàm số lượng giác, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng quy tắc hàm hợp một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi tính toán.

Tài liệu tham khảo thêm

Để hiểu rõ hơn về đạo hàm hàm số lượng giác, bạn có thể tham khảo thêm:

  • Sách giáo khoa Toán 11
  • Sách bài tập Toán 11
  • Các trang web học Toán trực tuyến uy tín

Kết luận

Hy vọng với lời giải chi tiết và những hướng dẫn trên, các bạn học sinh đã có thể tự tin giải quyết bài 31 trang 21 SBT Toán 11 Cánh Diều. Chúc các bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN