1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 38 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 38 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 38 trang 104 SBT Toán 11 Cánh Diều

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 38 trang 104 sách bài tập Toán 11 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán này một cách hiệu quả.

Chứng minh các định lí sau:

Đề bài

Chứng minh các định lí sau:

a) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

b) Cho một mặt phẳng và một đường thẳng không vuông góc với mặt phẳng đó. Khi đó tồn tại duy nhất một mặt phẳng chứa đường thẳng đã cho và vuông góc với mặt phẳng đã cho.

Phương pháp giải - Xem chi tiếtGiải bài 38 trang 104 sách bài tập toán 11 - Cánh diều 1

a) Giả sử có ba mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\) và \(\left( P \right) \bot \left( R \right)\). Ta cần chứng minh \(\left( Q \right) \bot \left( R \right)\).

b) Xét đường thẳng \(d\) không vuông góc với mặt phẳng \(\left( P \right)\). Chỉ ra rằng tồn tại duy nhất mặt phẳng \(\left( Q \right)\) vuông góc với \(\left( P \right)\) và chứa \(d\).

Lời giải chi tiết

a)

Giải bài 38 trang 104 sách bài tập toán 11 - Cánh diều 2

Giả sử có ba mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\) và \(\left( P \right) \bot \left( R \right)\). Ta cần chứng minh \(\left( Q \right) \bot \left( R \right)\). Thật vậy, gọi \(a\) là giao tuyến của \(\left( P \right)\) và \(\left( R \right)\). Lấy đường thẳng \(d\) nằm trong \(\left( R \right)\) sao cho \(a \bot d\).

Vì \(\left( P \right) \bot \left( R \right)\), \(a = \left( P \right) \cap \left( R \right)\), \(a \bot d\), ta suy ra \(d \bot \left( P \right)\).

Mà \(\left( P \right)\parallel \left( Q \right)\), ta có \(d \bot \left( Q \right)\). Do \(d \subset \left( R \right)\) nên ta suy ra \(\left( Q \right) \bot \left( R \right)\). Bài toán được chứng minh.

b) Xét đường thẳng \(d\) không vuông góc với mặt phẳng \(\left( P \right)\). Chỉ ra rằng tồn tại duy nhất mặt phẳng \(\left( Q \right)\) vuông góc với \(\left( P \right)\) và chứa \(d\).

Xét trường hợp \(d\) cắt \(\left( P \right)\) tại \(A\). (Các trường hợp \(d \subset \left( P \right)\) và \(d\parallel \left( P \right)\) chứng minh tương tự).

Giải bài 38 trang 104 sách bài tập toán 11 - Cánh diều 3

Lấy \(M \in d\) sao cho \(M \ne A\). Vẽ đường thẳng \(a\) đi qua \(M\) sao cho \(a \bot \left( P \right)\). Ta nhận xét rằng \(a\) và \(d\) cắt nhau, nên mặt phẳng \(\left( Q \right)\) chứa hai đường thẳng \(a\) và \(d\).

Vì \(a \bot \left( P \right)\), \(a \subset \left( Q \right)\) nên ta suy ra \(\left( P \right) \bot \left( Q \right)\).

Giả sử tồn tại mặt phẳng \(\left( {Q'} \right)\) sao cho \(\left( P \right) \bot \left( {Q'} \right)\) và \(d \subset \left( {Q'} \right)\). Ta thấy rằng \(d\) là giao tuyến của \(\left( {Q'} \right)\) và \(\left( Q \right)\). Do \(\left( P \right) \bot \left( Q \right)\) và \(\left( P \right) \bot \left( {Q'} \right)\), ta suy ra \(d \bot \left( P \right)\). Điều này là vô lí, vì \(d\) không vuông góc với \(\left( P \right)\). Như vậy, \(\left( Q \right)\) là duy nhất.

Bài toán được chứng minh.

Giải bài 38 trang 104 SBT Toán 11 Cánh Diều: Tổng quan và Phương pháp giải

Bài 38 trang 104 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm. Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán thực tế.

Nội dung bài toán

Thông thường, bài 38 trang 104 sẽ bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc đạo hàm: Vận dụng các quy tắc đạo hàm như quy tắc cộng, trừ, nhân, chia, quy tắc chuỗi để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết bài toán thực tế: Sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc để giải quyết các bài toán liên quan đến vận tốc, gia tốc.

Lời giải chi tiết bài 38 trang 104 SBT Toán 11 Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài toán này, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài tập. Dưới đây là một ví dụ minh họa:

Ví dụ minh họa

Bài toán: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

  1. Áp dụng quy tắc đạo hàm của tổng: f'(x) = (3x2)' + (2x)' + (-1)'
  2. Áp dụng quy tắc đạo hàm của lũy thừa: (3x2)' = 6x, (2x)' = 2
  3. Đạo hàm của hằng số bằng 0: (-1)' = 0
  4. Vậy, f'(x) = 6x + 2

Mẹo giải nhanh và hiệu quả

Để giải bài tập đạo hàm một cách nhanh chóng và hiệu quả, bạn nên:

  • Nắm vững các quy tắc đạo hàm cơ bản: Điều này sẽ giúp bạn tính đạo hàm một cách dễ dàng và chính xác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Sách giáo khoa Toán 11
  • Các trang web học Toán trực tuyến
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 38 trang 104 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tốt!

Chủ đềNội dung
Đạo hàmKhái niệm, quy tắc tính đạo hàm
Ứng dụng đạo hàmTìm cực trị, điểm uốn, giải phương trình

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN