Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 13 trang 46 sách bài tập Toán 11 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi đã biên soạn hướng dẫn này để giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Bài viết này sẽ cung cấp đáp án, phương pháp giải và những lưu ý quan trọng để bạn có thể hoàn thành bài tập một cách hiệu quả nhất.
Chứng minh rằng:
Đề bài
Chứng minh rằng:
a) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} \) bị chặn dưới.
b) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = - {n^2} - n\) bị chặn trên.
c) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn.
Phương pháp giải - Xem chi tiết
a) Chứng minh rằng \(\sqrt {{n^2} + 1} \ge \sqrt 2 \) với \(\forall n \in {\mathbb{N}^*}\)
b) Chứng minh rằng \( - {n^2} - n \le - 2\) với \(\forall n \in {\mathbb{N}^*}\)
c) Chứng minh rằng \(0 < \frac{{2n + 1}}{{n + 2}} < 2\) với \(\forall n \in {\mathbb{N}^*}\). Từ đó kết luận rằng tồn tại các số thực dương \(m,{\rm{ }}M\) với \(M < 2\) để \(m \le \frac{{2n + 1}}{{n + 2}} \le M\).
Lời giải chi tiết
a) Với \(\forall n \in {\mathbb{N}^*}\), ta có \({n^2} \ge 1 \Rightarrow {n^2} + 1 \ge 2 \Rightarrow \sqrt {{n^2} + 1} \ge \sqrt 2 \).
Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} \) bị chặn dưới.
b) Với \(\forall n \in {\mathbb{N}^*}\), ta có \(n\left( {n + 1} \right) \ge 1.2 = 2 \Rightarrow {n^2} + n \ge 2 \Rightarrow - {n^2} - n \le - 2\)
Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = - {n^2} - n\) bị chặn trên.
c) Ta nhận thấy với \(\forall n \in {\mathbb{N}^*}\) thì \(\frac{{2n + 1}}{{n + 2}} > 0\). Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn dưới.
Mặt khác, xét \({u_n} - 2 = \frac{{2n + 1}}{{n + 2}} - 2 = \frac{{2n + 1 - 2\left( {n + 2} \right)}}{{n + 2}} = \frac{{ - 3}}{{n + 2}} < 0 \Rightarrow {u_n} < 2\).
Suy ra dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn trên.
Dãy số \(\left( {{u_n}} \right)\) vừa bị chặn trên, vừa bị chặn dưới, cho nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
Bài toán được chứng minh.
Bài 13 trang 46 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của chúng để giải quyết các bài toán liên quan đến hình học không gian.
Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Đề bài: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính a + b.
Giải:
a + b = (1 + (-2); 2 + 1; 3 + 0) = (-1; 3; 3)
Tusach.vn cung cấp đầy đủ lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 11 Cánh Diều. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Ngoài ra, bạn có thể tham khảo thêm các tài liệu học tập khác trên tusach.vn, bao gồm:
Chúc bạn học tập tốt!
| Bài tập | Đáp án |
|---|---|
| Bài 1 | (-1; 3; 3) |
| Bài 2 | (Đáp án sẽ được cập nhật) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập