Tusach.vn cung cấp lời giải chi tiết và dễ hiểu bài 40 trang 104 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải toán, chuẩn bị tốt cho các kỳ thi sắp tới.
Chúng tôi luôn cập nhật đáp án nhanh chóng và chính xác nhất, đồng thời cung cấp các phương pháp giải bài tập hiệu quả.
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và \(ABCD\) là hình chữ nhật. Chứng minh rằng:
Đề bài
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và \(ABCD\) là hình chữ nhật. Chứng minh rằng:
a) \(\left( {SAB} \right) \bot \left( {SBC} \right)\)
b) \(\left( {SAD} \right) \bot \left( {SCD} \right)\)
Phương pháp giải - Xem chi tiết
Để chứng minh 2 mặt phẳng vuông góc, ta cần chứng minh 1 đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.
Lời giải chi tiết

a) Do \(SA \bot \left( {ABCD} \right)\), ta suy ra \(SA \bot BC\).
Do \(ABCD\) là hình chữ nhật, ta suy ra \(AB \bot BC\).
Như vậy ta có \(SA \bot BC\), \(AB \bot BC\). Điều này dẫn tới \(\left( {SAB} \right) \bot BC\).
Do \(BC \subset \left( {SBC} \right)\), nên ta suy ra \(\left( {SAB} \right) \bot \left( {SBC} \right)\). Ta có điều phải chứng minh.
b) Do \(SA \bot \left( {ABCD} \right)\), ta suy ra \(SA \bot DC\).
Do \(ABCD\) là hình chữ nhật, ta suy ra \(AD \bot DC\).
Như vậy ta có \(SA \bot DC\), \(AD \bot DC\). Điều này dẫn tới \(\left( {SAD} \right) \bot DC\).
Do \(DC \subset \left( {SDC} \right)\), nên ta suy ra \(\left( {SAD} \right) \bot \left( {SDC} \right)\). Ta có điều phải chứng minh.
Bài 40 trang 104 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số (tổng, hiệu, tích, thương, hàm hợp).
Để giải quyết bài 40 trang 104 SBT Toán 11 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là hướng dẫn giải chi tiết từng phần của bài 40 trang 104 SBT Toán 11 Cánh Diều. (Lưu ý: Nội dung cụ thể của bài tập sẽ được trình bày chi tiết tại đây, ví dụ:)
Giải:
Giải:
Áp dụng quy tắc đạo hàm của tích: g'(x) = (sin(x))' * cos(x) + sin(x) * (cos(x))'
Ta có: (sin(x))' = cos(x) và (cos(x))' = -sin(x)
Vậy, g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Để giải nhanh các bài tập về đạo hàm, bạn có thể áp dụng các mẹo sau:
Để hiểu sâu hơn về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 40 trang 104 SBT Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên, các bạn học sinh sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập