Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 43 trang 113 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G\), \(I\), \(K\) lần lượt là trọng tâm của các tam giác \(ABC\), \(A'B'C'\), \(A'B'B\).
Đề bài
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G\), \(I\), \(K\) lần lượt là trọng tâm của các tam giác \(ABC\), \(A'B'C'\), \(A'B'B\).
a) Chứng minh rằng \(IK\parallel \left( {BCC'B'} \right)\).
b) Chứng minh rằng \(\left( {AGK} \right)\parallel \left( {A'IC} \right)\).
c) Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua \(K\) và song song với mặt phẳng \(\left( {ABC} \right)\). Mặt phẳng \(\left( \alpha \right)\) cắt \(A'C\) tại điểm \(L\). Tính \(\frac{{LA'}}{{LC}}\).
Phương pháp giải - Xem chi tiết
a) Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(B'C'\), \(BB'\). Sử dụng định lí Thales, chứng minh rằng \(IK\parallel MN\), từ đó suy ra điều phải chứng minh.
b) Chỉ ra rằng mặt phẳng \(\left( {AGK} \right)\) cũng là mặt phẳng \(\left( {AB'P} \right)\), mặt phẳng \(\left( {A'IC} \right)\) cũng là mặt phẳng \(\left( {A'MC} \right)\). Để chứng minh \(\left( {AB'P} \right)\) song song với \(\left( {A'MC} \right)\), cần chỉ ra hai đường thẳng cắt nhau, nằm trong \(\left( {AB'P} \right)\) và song song với \(\left( {A'MC} \right)\).
c) Sử dụng định lí Thales trong không gian với trường hợp hai đường thẳng \(B'A\) và \(A'C\) cắt ba mặt phẳng song song \(\left( {ABC} \right)\), \(\left( \alpha \right)\), \(\left( {A'B'C'} \right)\) để tính tỉ số \(\frac{{LA'}}{{LC}}\).
Lời giải chi tiết

a) Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(B'C'\), \(BB'\).
Do \(I\) là trọng tâm tam giác \(A'B'C'\) nên \(I \in A'M\) và \(\frac{{A'I}}{{A'M}} = \frac{2}{3}\).
Tương tự, ta cũng có \(K \in A'N\) và \(\frac{{A'K}}{{A'N}} = \frac{2}{3}\).
Do \(\frac{{A'I}}{{A'M}} = \frac{{A'K}}{{A'N}}\) nên \(IK\parallel MN\). Vì \(MN \in \left( {BCC'B'} \right)\) nên \(IK\parallel \left( {BCC'B'} \right)\).
b) Gọi \(P\) là trung điểm cạnh \(BC\).
Do \(G\) là trọng tâm tam giác \(ABC\) nên \(G \in AP\).
Mặt khác, do \(K\) là trọng tâm tam giác \(\left( {A'B'B} \right)\) nên \(B'K\) đi qua trung điểm của \(A'B\). Vì \(ABB'A'\) là hình bình hành, nên ta suy ra \(AB'\) cũng đi qua trung điểm của \(A'B\). Do vậy, ba điểm \(A\), \(K\), \(B'\) thẳng hàng. Từ đó, mặt phẳng \(\left( {AGK} \right)\) chính là mặt phẳng \(\left( {AB'P} \right)\).
Do \(I \in A'M\), nên mặt phẳng \(\left( {A'IC} \right)\) cũng là mặt phẳng \(\left( {A'MC} \right)\). Như vậy, để chứng minh \(\left( {AGK} \right)\) song song với \(\left( {A'IC} \right)\), ta cần chứng minh \(\left( {AB'P} \right)\) song song với \(\left( {A'MC} \right)\).
Tứ giác \(MB'PC\) có \(MB' = PC\left( { = \frac{1}{2}BC} \right)\) và \(MB'\parallel PC\) nên nó là hình bình hành.
Suy ra \(B'P\parallel MC\). Do \(MC \subset \left( {A'MC} \right)\) nên \(B'P\parallel \left( {A'MC} \right)\).
Chứng minh tương tự, ta cũng có \(AP\parallel \left( {A'MC} \right)\).
Như vậy \(\left( {AB'P} \right)\parallel \left( {A'MC} \right)\), và bài toán được chứng minh.
c) Xét ba mặt phẳng song song \(\left( {A'B'C'} \right)\), \(\left( \alpha \right)\), \(\left( {ABC} \right)\), ta có đường thẳng \(B'A\) cắt ba mặt phẳng lần lượt tại \(B'\), \(K\), \(A\). Hơn nữa, đường thẳng \(A'C\) cũng cắt ba mặt phẳng trên lần lượt tại \(A'\), \(L\), \(C\). Do đó, theo định lí Thales trong không gian, ta có: \(\frac{{B'K}}{{A'L}} = \frac{{KA}}{{LC}} = \frac{{AB'}}{{CA'}} \Rightarrow \frac{{LA'}}{{LC}} = \frac{{B'K}}{{KA}}\).
Gọi \(O\) là trung điểm của \(A'B\). Vì \(K\) là trọng tâm tam giác \(\left( {A'B'B} \right)\) nên ta có \(\frac{{B'K}}{{B'O}} = \frac{2}{3}\). Mà \(\frac{{B'O}}{{AB'}} = \frac{1}{2}\) nên \(\frac{{B'K}}{{AB'}} = \frac{1}{3} \Rightarrow \frac{{B'K}}{{KA}} = \frac{1}{2}\). Từ đó \(\frac{{LA'}}{{LC}} = \frac{1}{2}\).
Bài 43 trang 113 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, tích vô hướng, và các tính chất liên quan để giải quyết các bài toán hình học không gian.
Bài 43 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài 43 yêu cầu chứng minh đẳng thức vectơ AB + CD = AD + CB. Cách giải như sau:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tập môn Toán 11:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 43 trang 113 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
| Công thức quan trọng | Mô tả |
|---|---|
| Tích vô hướng | a.b = |a||b|cos(θ) |
| Độ dài vectơ | |a| = √(x² + y² + z²) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập